Skip to content

Classify_kerdensom_v3

Adrian Quintana edited this page Dec 11, 2017 · 1 revision

!xmipp_classify_kerdensom (v3.0)

Usage

Purpose: Kernel Density Estimator Self-Organizing Map KerDenSOM stands for Kernel Probability Density Estimator Self-Organizing Map. It maps a set of high dimensional input vectors into a two-dimensional grid. For more information, please see the following reference.

The topology of the network can be hexagonal or rectangular (see below). It is advised to design maps with one of its sides larger than the other (e.g. 10x5).

   Xdim is ------>
   HEXAGONAL:
 O O O O O O O O O
O O O & & & O O O
 O O & @ @ & O O O
O O & @ + @ & O O
 O O & @ @ & O O O
O O O & & & O O O
 O O O O O O O O O
   RECTANGULAR:
O O O O O O O O O
0 O O O & O O O O
O O O & @ & O O O
O O & @ + @ & O O
O O O & @ & O O O
O O O O & O O O O
O O O O O O O O O

See also Image_vectorize_v3

Parameters

$: Input data file This file is generated by[[Image_vectorize_v3]] $: rootname_classes.xmd, rootname_images.xmd and rootname_vectors.xmd will be created This file mst be read byImage_vectorize_v3 $--xdim &lt;Hdimension10> $--ydim &lt;Vdimension5> $--topology &lt;topologyRECT> where <topology> can be:

    • $--deterministic_annealing &lt;steps10> <Initial_reg=1000> <Final_reg=100> $--eps &lt;epsilon1e-7> $--iter &lt;N200> $``: Normalize input data

Examples and notes

xmipp_image_vectorize -i images.stk -o vectors.xmd
xmipp_classify_kerdensom -i vectors.xmd -o kerdensom.xmd

User's comments

Clone this wiki locally