Skip to content

Implementation of CellPLM #19

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 17 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion scripts/run_benchmark/run_full_local.sh
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@ input_states: resources/datasets/**/state.yaml
rename_keys: 'input_dataset:output_dataset;input_solution:output_solution'
output_state: "state.yaml"
publish_dir: "$publish_dir"
settings: '{"methods_exclude": ["uce", "scgpt_finetuned"]}'
settings: '{"methods_exclude": ["uce", "scgpt_finetuned", "cellplm"]}'
HERE

# run the benchmark
Expand Down
2 changes: 1 addition & 1 deletion scripts/run_benchmark/run_test_local.sh
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@ input_states: resources_test/task_batch_integration/**/state.yaml
rename_keys: 'input_dataset:output_dataset;input_solution:output_solution'
output_state: "state.yaml"
publish_dir: "$publish_dir"
settings: '{"methods_exclude": ["uce", "scgpt_finetuned"]}'
settings: '{"methods_exclude": ["uce", "scgpt_finetuned", "cellplm]}'
HERE

nextflow run . \
Expand Down
51 changes: 51 additions & 0 deletions src/methods/cellplm/config.vsh.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,51 @@
__merge__: ../../api/base_method.yaml

name: cellplm

label: CellPLM

summary: "A foundation model pre-trained with cells as tokens."

description: |
CellPLM is a pre-trained language model specifically designed for single-cell analysis that leverages the principles of natural language processing (NLP) to understand and process single-cell gene expression data.
references:
doi:
- 10.1101/2023.10.03.560734
links:
documentation: https://github.com/OmicsML/CellPLM/tree/main/tutorials
repository: https://github.com/OmicsML/CellPLM

info:
method_types: [embedding]
preferred_normalization: counts

arguments:
- name: --model_name
type: string
description: String giving the CellPLM model to use
choices: ["20231027_85M", "20230926_85M"]
default: "20231027_85M"
- name: --model
type: file
description: Path to the directory containing CellPLM model files or a .zip/.tar.gz archive
required: true

resources:
- type: python_script
path: script.py
- path: /src/utils/read_anndata_partial.py
- path: /src/utils/exit_codes.py

engines:
- type: docker
image: openproblems/base_pytorch_nvidia:1.0.0
setup:
- type: python
pypi:
- cellplm

runners:
- type: executable
- type: nextflow
directives:
label: [midtime, midmem, midcpu, gpu]
104 changes: 104 additions & 0 deletions src/methods/cellplm/script.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,104 @@
import os
import sys
import tarfile
import tempfile
import zipfile

import anndata as ad
import torch
from CellPLM.pipeline.cell_embedding import CellEmbeddingPipeline
from CellPLM.utils import set_seed

## VIASH START
# Note: this section is auto-generated by viash at runtime. To edit it, make changes
# in config.vsh.yaml and then run `viash config inject config.vsh.yaml`.

par = {
"input": "resources_test/.../input.h5ad",
"output": "output.h5ad",
"model": "20231027_85M",
}
meta = {"name": "cellplm"}
## VIASH END

sys.path.append(meta["resources_dir"])
from exit_codes import exit_non_applicable
from read_anndata_partial import read_anndata

set_seed(24)
device = "cuda" if torch.cuda.is_available() else "cpu"
if device == "cpu":
import warnings

warnings.warn("Loading CellPLM models requires a GPU, this run will fail")

print("\n>>> Reading input files...", flush=True)
print(f"Input H5AD file: '{par['input']}'", flush=True)
adata = read_anndata(par["input"], X="layers/counts", obs="obs", var="var", uns="uns")

if adata.uns["dataset_organism"] != "homo_sapiens":
exit_non_applicable(
f"CellPLM can only be used with human data "
f'(dataset_organism == "{adata.uns["dataset_organism"]}")'
)

print(adata, flush=True)

print("\n>>> Getting model files...", flush=True)
# Available from https://www.dropbox.com/scl/fo/i5rmxgtqzg7iykt2e9uqm/h/ckpt?dl=0&subfolder_nav_tracking=1
if os.path.isdir(par["model"]):
model_temp = None
model_dir = par["model"]
else:
model_temp = tempfile.TemporaryDirectory()
model_dir = model_temp.name

if zipfile.is_zipfile(par["model"]):
print("Extracting CellPLM models from .zip...", flush=True)
with zipfile.ZipFile(par["model"], "r") as zip_file:
zip_file.extractall(model_dir)
elif tarfile.is_tarfile(par["model"]) and par["model"].endswith(".tar.gz"):
print("Extracting CellPLM models from .tar.gz...", flush=True)
with tarfile.open(par["model"], "r:gz") as tar_file:
tar_file.extractall(model_dir)
model_dir = os.path.join(model_dir, os.listdir(model_dir)[0])
else:
raise ValueError(
"The 'model' argument should be a directory a .zip file or a .tar.gz file"
)

print(f"Model directory: '{model_dir}'", flush=True)

print("\n>>> Creating embedding model pipeline...", flush=True)
pipeline = CellEmbeddingPipeline(
pretrain_prefix=par["model_name"], pretrain_directory=model_dir
)

print("\n>>> Embedding data...", flush=True)
embedding = pipeline.predict(adata, device=device)
embedding = embedding.cpu().numpy()

print("\n>>> Storing output...", flush=True)
output = ad.AnnData(
obs=adata.obs[[]],
var=adata.var[[]],
obsm={
"X_emb": embedding,
},
uns={
"dataset_id": adata.uns["dataset_id"],
"normalization_id": adata.uns["normalization_id"],
"method_id": meta["name"],
},
)
print(output)

print("\n>>> Writing output to file...", flush=True)
print(f"Output H5AD file: '{par['output']}'", flush=True)
output.write_h5ad(par["output"], compression="gzip")

if model_temp is not None:
print("\n>>> Cleaning up temporary directories...", flush=True)
model_temp.cleanup()

print("\n>>> Done!", flush=True)
1 change: 1 addition & 0 deletions src/workflows/run_benchmark/config.vsh.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -91,6 +91,7 @@ dependencies:
- name: methods/batchelor_fastmnn
- name: methods/batchelor_mnn_correct
- name: methods/bbknn
- name: methods/cellplm
- name: methods/combat
- name: methods/geneformer
- name: methods/harmony
Expand Down
3 changes: 3 additions & 0 deletions src/workflows/run_benchmark/main.nf
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,9 @@ methods = [
batchelor_fastmnn,
batchelor_mnn_correct,
bbknn,
cellplm.run(
args: [model: file("s3://openproblems-work/cache/cellplm-ckpt.zip")]
),
combat,
geneformer,
harmony,
Expand Down
Loading