Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions Mathlib/Topology/KrullDimension.lean
Original file line number Diff line number Diff line change
Expand Up @@ -35,8 +35,8 @@ def IrreducibleCloseds.map {f : X → Y} (hf1 : Continuous f) (hf2 : IsClosedMap
(c : IrreducibleCloseds X) :
IrreducibleCloseds Y where
carrier := f '' c
is_irreducible' := c.is_irreducible'.image f hf1.continuousOn
is_closed' := hf2 c c.is_closed'
isIrreducible' := c.isIrreducible.image f hf1.continuousOn
isClosed' := hf2 c c.isClosed

/--
Taking images under a closed embedding is strictly monotone on the preorder of irreducible closeds.
Expand Down
12 changes: 8 additions & 4 deletions Mathlib/Topology/Sets/Closeds.lean
Original file line number Diff line number Diff line change
Expand Up @@ -362,8 +362,8 @@ end Clopens
structure IrreducibleCloseds (α : Type*) [TopologicalSpace α] where
/-- the carrier set, i.e. the points in this set -/
carrier : Set α
is_irreducible' : IsIrreducible carrier
is_closed' : IsClosed carrier
isIrreducible' : IsIrreducible carrier
isClosed' : IsClosed carrier

namespace IrreducibleCloseds

Expand All @@ -374,9 +374,13 @@ instance : SetLike (IrreducibleCloseds α) α where
instance : CanLift (Set α) (IrreducibleCloseds α) (↑) (fun s ↦ IsIrreducible s ∧ IsClosed s) where
prf s hs := ⟨⟨s, hs.1, hs.2⟩, rfl⟩

theorem isIrreducible (s : IrreducibleCloseds α) : IsIrreducible (s : Set α) := s.is_irreducible'
theorem isIrreducible (s : IrreducibleCloseds α) : IsIrreducible (s : Set α) := s.isIrreducible'

@[deprecated (since := "2025-10-14")] alias is_irreducible' := isIrreducible

theorem isClosed (s : IrreducibleCloseds α) : IsClosed (s : Set α) := s.isClosed'

theorem isClosed (s : IrreducibleCloseds α) : IsClosed (s : Set α) := s.is_closed'
@[deprecated (since := "2025-10-14")] alias is_closed' := isClosed

/-- See Note [custom simps projection]. -/
def Simps.coe (s : IrreducibleCloseds α) : Set α := s
Expand Down
Loading