Skip to content

Fix analysis function refactor bugs #1406

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 10 commits into from
Mar 11, 2025
Merged

Fix analysis function refactor bugs #1406

merged 10 commits into from
Mar 11, 2025

Conversation

edelarua
Copy link
Contributor

@edelarua edelarua commented Mar 6, 2025

Pull Request

Fixes #1405

see checks downstream

@edelarua edelarua added the sme label Mar 6, 2025
Copy link
Contributor

github-actions bot commented Mar 6, 2025

Unit Tests Summary

    1 files     85 suites   1m 14s ⏱️
  879 tests   869 ✅  10 💤 0 ❌
1 909 runs  1 211 ✅ 698 💤 0 ❌

Results for commit d803406.

♻️ This comment has been updated with latest results.

Copy link
Contributor

github-actions bot commented Mar 6, 2025

Unit Test Performance Difference

Additional test case details
Test Suite $Status$ Time on main $±Time$ Test Case
summarize_num_patients 👶 $+0.07$ summarize_num_patients_works_with_single_unnamed_.labels_.formats_values

Results for commit f052b04

♻️ This comment has been updated with latest results.

Copy link
Contributor

github-actions bot commented Mar 6, 2025

badge

Code Coverage Summary

Filename                                   Stmts    Miss  Cover    Missing
---------------------------------------  -------  ------  -------  ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
R/abnormal_by_baseline.R                     101       3  97.03%   242, 244-245
R/abnormal_by_marked.R                        88       8  90.91%   94-98, 281, 283-284
R/abnormal_by_worst_grade.R                   94       3  96.81%   215, 217-218
R/abnormal_lab_worsen_by_baseline.R          159      10  93.71%   205-208, 213, 215-216, 459-461
R/abnormal.R                                  78       2  97.44%   222, 224
R/analyze_variables.R                        287       5  98.26%   587-590, 778
R/analyze_vars_in_cols.R                     178      14  92.13%   178, 221, 235-236, 238, 246-254
R/bland_altman.R                              92       1  98.91%   46
R/combination_function.R                       9       0  100.00%
R/compare_variables.R                         35       0  100.00%
R/control_incidence_rate.R                    10       0  100.00%
R/control_logistic.R                           7       0  100.00%
R/control_step.R                              23       1  95.65%   58
R/control_survival.R                          15       0  100.00%
R/count_cumulative.R                         115       4  96.52%   74, 270-271, 273
R/count_missed_doses.R                        89       4  95.51%   206-209
R/count_occurrences_by_grade.R               169       8  95.27%   178, 386, 388, 465, 467, 469, 473-474
R/count_occurrences.R                        137      10  92.70%   119, 262-264, 330-332, 334, 338-339
R/count_patients_events_in_cols.R             67       1  98.51%   60
R/count_patients_with_event.R                 73       2  97.26%   220, 223
R/count_patients_with_flags.R                 93       2  97.85%   234, 236
R/count_values.R                              61       2  96.72%   193, 196
R/cox_regression_inter.R                     154       0  100.00%
R/cox_regression.R                           161       0  100.00%
R/coxph.R                                    167       7  95.81%   191-195, 238, 253, 261, 267-268
R/d_pkparam.R                                406       0  100.00%
R/decorate_grob.R                            113       0  100.00%
R/desctools_binom_diff.R                     621      64  89.69%   53, 88-89, 125-126, 129, 199, 223-232, 264, 266, 286, 290, 294, 298, 353, 356, 359, 362, 422, 430, 439, 444-447, 454, 457, 466, 469, 516-517, 519-520, 522-523, 525-526, 593, 604-616, 620, 663, 676, 680
R/df_explicit_na.R                            30       0  100.00%
R/estimate_multinomial_rsp.R                  86       4  95.35%   65, 212, 214-215
R/estimate_proportion.R                      229       7  96.94%   84, 95, 236, 238-239, 370, 536
R/fit_rsp_step.R                              36       0  100.00%
R/fit_survival_step.R                         36       0  100.00%
R/formatting_functions.R                     183       2  98.91%   141, 276
R/g_forest.R                                 585      60  89.74%   240, 252-255, 260-261, 275, 277, 287-290, 335-338, 345, 414, 501, 514, 518-519, 524-525, 538, 554, 601, 630, 705, 714, 720, 739, 794-814, 817, 828, 847, 902, 905, 1040-1045
R/g_ipp.R                                    133       0  100.00%
R/g_km.R                                     350      57  83.71%   285-288, 307-309, 363-366, 400, 428, 432-475, 482-486
R/g_lineplot.R                               260      22  91.54%   204, 378-385, 424-434, 543, 551
R/g_step.R                                    68       1  98.53%   108
R/g_waterfall.R                               47       0  100.00%
R/h_adsl_adlb_merge_using_worst_flag.R        73       0  100.00%
R/h_biomarkers_subgroups.R                    91      23  74.73%   40-42, 84-103
R/h_cox_regression.R                         110       0  100.00%
R/h_incidence_rate.R                          45       0  100.00%
R/h_km.R                                     509      41  91.94%   137, 189-194, 287, 378, 380-381, 392-394, 413, 420-421, 423-425, 433-435, 460, 465-468, 651-654, 1108-1119
R/h_logistic_regression.R                    468       3  99.36%   203-204, 273
R/h_map_for_count_abnormal.R                  54       0  100.00%
R/h_pkparam_sort.R                            15       0  100.00%
R/h_response_biomarkers_subgroups.R           77      12  84.42%   50-55, 107-112
R/h_response_subgroups.R                     178      18  89.89%   257-270, 329-334
R/h_stack_by_baskets.R                        64       1  98.44%   89
R/h_step.R                                   180       0  100.00%
R/h_survival_biomarkers_subgroups.R           73       6  91.78%   111-116
R/h_survival_duration_subgroups.R            207      18  91.30%   259-271, 336-341
R/imputation_rule.R                           17       0  100.00%
R/incidence_rate.R                           103       7  93.20%   68-73, 242
R/logistic_regression.R                      102       0  100.00%
R/missing_data.R                              21       3  85.71%   32, 66, 76
R/odds_ratio.R                               157       4  97.45%   270-273
R/prop_diff_test.R                           144       2  98.61%   230, 232
R/prop_diff.R                                318      17  94.65%   71-74, 106, 299, 301, 373-380, 523, 688
R/prune_occurrences.R                         57       0  100.00%
R/response_biomarkers_subgroups.R            124      10  91.94%   88-91, 270-275
R/response_subgroups.R                       247      16  93.52%   100-105, 271-275, 280, 282-283, 310-311
R/riskdiff.R                                  65       4  93.85%   94-97
R/rtables_access.R                            38       0  100.00%
R/score_occurrences.R                         20       1  95.00%   124
R/split_cols_by_groups.R                      49       0  100.00%
R/stat.R                                      59       0  100.00%
R/summarize_ancova.R                         142       2  98.59%   316-317
R/summarize_change.R                          72       3  95.83%   175, 177-178
R/summarize_colvars.R                         13       1  92.31%   75
R/summarize_coxreg.R                         172       0  100.00%
R/summarize_glm_count.R                      269      10  96.28%   129-130, 202-203, 459-463, 596
R/summarize_num_patients.R                   121      10  91.74%   122-124, 244, 248, 252-253, 337-338, 340
R/summarize_patients_exposure_in_cols.R      155       7  95.48%   58, 232-233, 237, 357-358, 362
R/survival_biomarkers_subgroups.R            136      10  92.65%   117-122, 228-231
R/survival_coxph_pairwise.R                  124       5  95.97%   52-53, 248, 250-251
R/survival_duration_subgroups.R              245      15  93.88%   124-129, 268-273, 286, 288-289
R/survival_time.R                            120       1  99.17%   251
R/survival_timepoint.R                       153       2  98.69%   302, 304
R/utils_checkmate.R                           68       0  100.00%
R/utils_default_stats_formats_labels.R       194       0  100.00%
R/utils_factor.R                              87       1  98.85%   99
R/utils_ggplot.R                             110       0  100.00%
R/utils_grid.R                               126       5  96.03%   164, 279-286
R/utils_rtables.R                            125       9  92.80%   39, 46, 405-406, 528-532
R/utils_split_funs.R                          52       2  96.15%   82, 94
R/utils.R                                    141       7  95.04%   118, 121, 124, 128, 137-138, 332
TOTAL                                      11935     580  95.14%

Diff against main

Filename                                  Stmts    Miss  Cover
--------------------------------------  -------  ------  --------
R/count_occurrences_by_grade.R               +6      +3  -1.67%
R/count_occurrences.R                        +6      +2  -1.19%
R/summarize_change.R                         +1       0  +0.06%
R/summarize_num_patients.R                   +6      +1  -0.44%
R/utils_default_stats_formats_labels.R       +8       0  +100.00%
TOTAL                                       +27      +6  -0.04%

Results for commit: d803406

Minimum allowed coverage is 80%

♻️ This comment has been updated with latest results

@shajoezhu
Copy link
Contributor

hi @edelarua , can you please raise PRs downstream in scda.test and chevron and test this. Thank you!

Copy link
Contributor

@Melkiades Melkiades left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks Emily! Could you add only a regression test for the scda.test error

@edelarua
Copy link
Contributor Author

edelarua commented Mar 7, 2025

hi @edelarua , can you please raise PRs downstream in scda.test and chevron and test this. Thank you!

scda.test: insightsengineering/scda.test#189
chevron: insightsengineering/chevron#829

Copy link
Contributor

@Melkiades Melkiades left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

For me it is good to merge when test PRs are ready. Thanks @edelarua!!

@edelarua
Copy link
Contributor Author

@shajoezhu are we good to merge this one in?

@shajoezhu shajoezhu merged commit 0262e09 into main Mar 11, 2025
29 checks passed
@shajoezhu shajoezhu deleted the 1405_afun_refactor_bugs branch March 11, 2025 02:21
@github-actions github-actions bot locked and limited conversation to collaborators Mar 11, 2025
Sign up for free to subscribe to this conversation on GitHub. Already have an account? Sign in.
Labels
Projects
None yet
Development

Successfully merging this pull request may close these issues.

Bug fixes for analysis function refactor
3 participants