Skip to content

afondiel/edge-audio

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Edge Audio 🎙️ | A Practical Guide

A practical guide for real-world and efficient AI audio applications for resource-constrained devices with industry standards in mind.

New to Edge AI?

Table of Contents

Introduction

The goal of this guide is to provide resources for building, optimizing, and deploying AI audio applications at the edge, through hands-on examples including practical notebooks and real-world use cases across key industries.

Key Concepts

Industry Blueprints

  • Autonomous Systems
  • Healthcare & Medical Imaging*
  • Retail & Consumer Analytics
  • Security & Surveillance
  • Agriculture & Precision Farming
  • Manufacturing & Quality Control
  • Smart Cities & Urban Planning

Edge Optimization Lab: techniques and tools for maximizing performance and efficiency of audio models on edge hardware

  • Model Quantization
  • Pruning Techniques
  • Federated Learning
  • Compiler Targets
  • Hardware-Specific Optimization

Production Pipelines: guides and templates for robust, scalable edge audio AI operations

  • CI/CD for Edge
  • Monitoring (Drift Detection, Edge Metrics Dashboard)
  • OTA Updates
  • Edge Security (Secure Boot, Data Encryption, Threat Detection, Privacy-Preserving Audio, Adversarial Robustness, Device Hardening, Compliance)

Reference Architectures: blueprints for edge audio hardware and system design

  • Microphone Array Setups
  • Edge Server Specs
  • IoT Connectivity
  • Edge-Cloud Hybrid Models

Integration

  • Notebooks (hands-on deep dives)
  • Companion Resources
  • Industry-Specific Stardards

Project Structure

├── edge-ai-engineering/
│   ├── introduction-to-edge-ai.md
│   ├── edge-ai-architectures.md
│   ├── model-optimization-techniques.md
│   ├── hardware-acceleration.md
│   ├── edge-deployment-strategies.md
│   ├── real-time-processing.md
│   ├── privacy-and-security.md
│   ├── edge-ai-frameworks.md
│   └── benchmarking-and-performance.md    
├── industry-blueprints/
│   ├── autonomous-systems/
│   │   ├── voice-command-recognition-tflite.md
│   │   ├── siren-detection-jetson.md
│   │   └── acoustic-scene-understanding.md
│   ├── healthcare-medical-imaging/
│   │   ├── heart-sound-analysis-edge.md
│   │   ├── respiratory-event-detection.md
│   │   └── patient-monitoring-audio.md
│   ├── retail-consumer-analytics/
│   │   ├── customer-sentiment-analysis.md
│   │   ├── in-store-sound-event-detection.md
│   │   └── voice-assistant-embedded.md
│   ├── security-surveillance/
│   │   ├── gunshot-detection-edge.md
│   │   ├── glass-break-detection.md
│   │   └── anomaly-detection-public-places.md
│   ├── agriculture-precision-farming/
│   │   ├── livestock-sound-monitoring.md
│   │   ├── machinery-failure-detection.md
│   │   └── environmental-sound-classification.md
│   ├── manufacturing-quality-control/
│   │   ├── equipment-fault-detection-audio.md
│   │   ├── process-monitoring-sound.md
│   │   └── predictive-maintenance-audio.md
│   └── smart-cities-urban-planning/
│       ├── urban-noise-mapping-edge.md
│       ├── emergency-sound-detection.md
│       └── public-transport-announcement-monitoring.md
├── edge-optimization-lab/
│   ├── model-quantization/
│   │   ├── post-training-int8.md
│   │   └── qat-pytorch.md
│   ├── pruning-techniques/
│   │   ├── magnitude-pruning.md
│   │   └── lottery-ticket-hypothesis.md
│   ├── federated-learning/
│   │   ├── privacy-preserving-audio.md
│   │   └── distributed-training.md
│   ├── compiler-targets/
│   │   ├── tvm-tutorial.md
│   │   └── onnx-runtime-guide.md
│   └── hardware-specific-optimization/
│       ├── nvidia-jetson-optimization.md
│       ├── raspberry-pi-edge-audio.md
│       └── microcontroller-tinyml-audio.md
├── production-pipelines/
│   ├── ci-cd-for-edge.md
│   ├── monitoring/
│   │   ├── drift-detection.md
│   │   └── edge-metrics-dashboard.md
│   ├── ota-updates.md
│   └── edge-security/
│       ├── secure-boot-implementation.md
│       ├── data-encryption-edge.md
│       ├── threat-detection/
│       │   ├── abnormal-sound-alerts.md
│       │   └── tamper-detection.md
│       ├── privacy-preserving-audio/
│       │   ├── federated-learning-techniques.md
│       │   └── differential-privacy.md
│       ├── model-security/
│       │   └── adversarial-robustness.md
│       ├── edge-device-hardening/
│       │   ├── secure-deployment.md
│       │   └── secure-communication.md
│       └── industry-compliance/
│           ├── regulatory-standards.md
│           └── ethical-ai-guidelines.md
├── reference-architectures/
│   ├── microphone-array-setups.md
│   ├── edge-server-specs.md
│   ├── iot-connectivity.md
│   └── edge-cloud-hybrid-models.md
└── _integration/
    ├── cs-notebook-redirects.md
    ├── companion-resources.md
    └── industry-specific-regulations.md

Getting Started

  1. Clone this repository:
git clone https://github.com/afondiel/edge-audio.git
  1. Explore the Edge AI Engineering section for foundational knowledge.
  2. Dive into Industry Blueprints for hands-on, sector-specific audio AI guides.
  3. Use the Edge Optimization Lab and Production Pipeline for deployment and scaling.

Contributing

See CONTRIBUTING.md for guidelines on how to contribute, report issues, or suggest new blueprints.

License

Distributed under the MIT License. See LICENSE for more information.

Resources

Books:

Back to the Top

Releases

No releases published

Packages

No packages published