Skip to content

Tack-Tau/SHAPE

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SHAPE

Symmetry-guided Hyperspace Accelerated Potential Energy exploration

Implemented in Python3

Dependencies

  • Python >= 3.8.5
  • Numpy >= 1.24.4
  • Scipy >= 1.10.1
  • Numba >= 0.58.1
  • ASE >= 3.22.1
  • libfp >= 3.1.2

Setup

To install the C implementation of Fingerprint Library
First, you need create a conda environment:

conda create -n shape python=3.8 pip ; conda activate shape
python3 -m pip install -U pip setuptools wheel

Then use conda to install LAPACK:

conda install conda-forge::lapack

Next, you need to download the libfp using git:

git clone https://github.com/Rutgers-ZRG/libfp.git

and modify the setup.py in libfp/fppy:

lapack_dir=["$CONDA_PREFIX/lib"]
lapack_lib=['openblas']
extra_link_args = ["-Wl,-rpath,$CONDA_PREFIX/lib"]
.
.
.
include_dirs = [source_dir, "$CONDA_PREFIX/include"]

Also set the corresponding DYLD_LIBRARY_PATH in your .bashrc file as:

export DYLD_LIBRARY_PATH="$CONDA_PREFIX/lib:$DYLD_LIBRARY_PATH"

Then:

cd libfp/fppy/ ; python3 -m pip install -e .

Then install the remaining Python packages through pip

python3 -m pip install numpy>=1.21.4 scipy>=1.8.0 numba>=0.56.2 ase==3.22.1

Usage

Basic ASE style documentation

See details for ASE calculator class and ASE calculator proposal

    Fingerprint Calculator interface for ASE
    
        Implemented Properties:
        
            'energy': Sum of atomic fingerprint distance (L2 norm of two atomic 
                                                          fingerprint vectors)
            
            'forces': Gradient of fingerprint energy, using Hellmann–Feynman theorem
            
            'stress': Cauchy stress tensor using finite difference method
            
        Parameters:
        
            atoms:  object
                Attach an atoms object to the calculator.
                
            contract: bool
                Calculate fingerprint vector in contracted Guassian-type orbitals or not
            
            ntype: int
                Number of different types of atoms in unit cell
            
            nx: int
                Maximum number of atoms in the sphere with cutoff radius for specific cell site
                
            lmax: int
                Integer to control whether using s orbitals only or both s and p orbitals for 
                calculating the Guassian overlap matrix (0 for s orbitals only, other integers
                will indicate that using both s and p orbitals)
                
            cutoff: float
                Cutoff radius for f_c(r) (smooth cutoff function) [amp], unit in Angstroms
                

Calling SHAPE calculator from ASE API

import numpy as np
import ase.io
from ase.optimize import BFGS, LBFGS, BFGSLineSearch, QuasiNewton, FIRE
from ase.optimize.sciopt import SciPyFminBFGS, SciPyFminCG
from ase.constraints import StrainFilter, UnitCellFilter
from ase.io.trajectory import Trajectory

from shape.calculator import SHAPE_Calculator
# from shape.mixing import MixedCalculator
# from ase.calculators.vasp import Vasp

atoms = ase.io.read('.'+'/'+'POSCAR')
ase.io.vasp.write_vasp('input.vasp', atoms, direct=True)
trajfile = 'opt.traj'

from functools import reduce

chem_nums = list(atoms.numbers)
znucl_list = reduce(lambda re, x: re+[x] if x not in re else re, chem_nums, [])
ntyp = len(znucl_list)
znucl = znucl_list

calc = fp_GD_Calculator(
            cutoff = 6.0,
            contract = False,
            znucl = znucl,
            lmax = 0,
            nx = 300,
            ntyp = ntyp
            )

atoms.calc = calc

# calc.test_energy_consistency(atoms = atoms)
# calc.test_force_consistency(atoms = atoms)

print ("fp_energy:\n", atoms.get_potential_energy())
print ("fp_forces:\n", atoms.get_forces())
print ("fp_stress:\n", atoms.get_stress())

# af = atoms
# af = StrainFilter(atoms)
traj = Trajectory(trajfile, 'w', atoms=atoms, properties=['energy', 'forces', 'stress'])

############################## Relaxation method ##############################

# opt = BFGS(af, maxstep = 1.e-1)
opt = FIRE(af, maxstep = 1.e-1)
# opt = LBFGS(af, maxstep = 1.e-1, memory = 10, use_line_search = True)
# opt = LBFGS(af, maxstep = 1.e-1, memory = 10, use_line_search = False)
# opt = SciPyFminCG(af, maxstep = 1.e-1)
# opt = SciPyFminBFGS(af, maxstep = 1.e-1)

opt.attach(traj.write, interval=1)
opt.run(fmax = 1.e-3, steps = 500)
traj.close()

traj = Trajectory(trajfile, 'r')
atoms_final = traj[-1]
ase.io.write('fp_opt.vasp', atoms_final, direct = True, long_format = True, vasp5 = True)

final_cell = atoms_final.get_cell()
final_cell_par = atoms_final.cell.cellpar()
final_structure = atoms_final.get_scaled_positions()
final_energy_per_atom = float( atoms_final.get_potential_energy() / len(atoms_final) )
final_stress = atoms_final.get_stress()

print("Relaxed lattice vectors are \n{0:s}".\
      format(np.array_str(final_cell, precision=6, suppress_small=False)))
print("Relaxed cell parameters are \n{0:s}".\
     format(np.array_str(final_cell_par, precision=6, suppress_small=False)))
print("Relaxed structure in fractional coordinates is \n{0:s}".\
      format(np.array_str(final_structure, precision=6, suppress_small=False)))
print("Final energy per atom is \n{0:.6f}".format(final_energy_per_atom))
print("Final stress is \n{0:s}".\
      format(np.array_str(final_stress, precision=6, suppress_small=False)))

Citation

If you use this Fingerprint Library (or modified version) for your research please kindly cite our paper:

@article{taoAcceleratingStructuralOptimization2024,
  title = {Accelerating Structural Optimization through Fingerprinting Space Integration on the Potential Energy Surface},
  author = {Tao, Shuo and Shao, Xuecheng and Zhu, Li},
  year = {2024},
  month = mar,
  journal = {J. Phys. Chem. Lett.},
  volume = {15},
  number = {11},
  pages = {3185--3190},
  doi = {10.1021/acs.jpclett.4c00275},
  url = {https://pubs.acs.org/doi/10.1021/acs.jpclett.4c00275}
}

If you use Fingerprint distance as a metric to measure crystal similarity please also cite the following paper:

@article{zhuFingerprintBasedMetric2016,
  title = {A Fingerprint Based Metric for Measuring Similarities of Crystalline Structures},
  author = {Zhu, Li and Amsler, Maximilian and Fuhrer, Tobias and Schaefer, Bastian and Faraji, Somayeh and Rostami, Samare and Ghasemi, S. Alireza and Sadeghi, Ali and Grauzinyte, Migle and Wolverton, Chris and Goedecker, Stefan},
  year = {2016},
  month = jan,
  journal = {The Journal of Chemical Physics},
  volume = {144},
  number = {3},
  pages = {034203},
  doi = {10.1063/1.4940026},
  url = {https://doi.org/10.1063/1.4940026}
}

About

Developer version of SHAPE for fixing bugs & adding features

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 94.1%
  • Shell 5.9%