-
Notifications
You must be signed in to change notification settings - Fork 4
Init: Randomized Quasi Monte Carlo Method #4
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from 3 commits
Commits
Show all changes
6 commits
Select commit
Hold shift + click to select a range
8b4b15c
Init: Randomized Quasi Monte Carlo Method
Engelsgeduld 7323deb
Fix: add Sobol sequences, xor floats, add numba to requirements, add …
Engelsgeduld 2ffe1b6
Fix: BITS value, add numba flag
Engelsgeduld 5a19c8e
Fix: rename args validation, change parametrs in linear test
Engelsgeduld d295feb
Fix: Requirements conflict
Engelsgeduld f14a635
Merge branch 'main' into Randomized-Quasi-Monte-Carlo
Engelsgeduld File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -2,3 +2,4 @@ | |
.mypy_cache/ | ||
.pytest_cache/ | ||
__pycache__/ | ||
.hypothesis/ |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,3 +1,4 @@ | ||
numpy~=1.26.4 | ||
scipy~=1.13.1 | ||
matplotlib~=3.8.4 | ||
numba~=0.59.0 |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,226 @@ | ||
from typing import Callable | ||
|
||
import numpy as np | ||
import numpy._typing as tpg | ||
import scipy | ||
from numba import njit | ||
|
||
BITS = 30 | ||
"""Number of bits in XOR. Should be less than 64""" | ||
NUMBA_FAST_MATH = True | ||
"""Flag for Numba fastmath. May be less accurate in some cases""" | ||
|
||
|
||
class RQMC: | ||
"""Randomize Quasi Monte Carlo Method | ||
|
||
Args: | ||
func: integrated function | ||
error_tolerance: pre-specified error tolerance | ||
count: number of rows of random values matrix | ||
base_n: number of columns of random values matrix | ||
i_max: allowed number of cycles | ||
a: parameter for quantile of normal distribution | ||
|
||
""" | ||
|
||
def __init__( | ||
self, | ||
func: Callable, | ||
error_tolerance: float = 1e-6, | ||
count: int = 25, | ||
base_n: int = 2**6, | ||
i_max: int = 100, | ||
a: float = 0.00047, | ||
): | ||
self._args_parse(error_tolerance, count, base_n, i_max, a) | ||
self.func = func | ||
self.error_tolerance = error_tolerance | ||
self.count = count | ||
self.base_n = base_n | ||
self.i_max = i_max | ||
self.z = scipy.stats.norm.ppf(1 - a / 2) | ||
|
||
if NUMBA_FAST_MATH: | ||
setattr(self, "_xor_float", njit(fastmath=True)(RQMC._xor_float)) | ||
|
||
@staticmethod | ||
def _args_parse(error_tolerance: float, count: int, base_n: int, i_max: int, a: float) -> None: | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. На парсинг не тянет, это скорее валидация |
||
"""Parse arguments | ||
|
||
Args: | ||
func: integrated function | ||
error_tolerance: pre-specified error tolerance | ||
count: number of rows of random values matrix | ||
base_n: number of columns of random values matrix | ||
i_max: allowed number of cycles | ||
a: parameter for quantile of normal distribution | ||
|
||
Returns: None | ||
|
||
Raises: | ||
ValueError: if any argument is not positive | ||
ValueError: if base n is not power of 2 | ||
""" | ||
|
||
if error_tolerance < 0: | ||
raise ValueError("Error tolerance must be positive") | ||
if count <= 0: | ||
raise ValueError("Count must be positive") | ||
if base_n <= 0: | ||
raise ValueError("Base n must be positive") | ||
if base_n & (base_n - 1) != 0: | ||
raise ValueError("Base n must be power of 2") | ||
if i_max <= 0: | ||
raise ValueError("i_max must be positive") | ||
if a <= 0 or a > 2: | ||
raise ValueError("a upper bound is 2 and lower bound is 0") | ||
|
||
def _independent_estimator(self, values: np._typing.NDArray) -> float: | ||
"""Apply function to row of matrix and find mean of row | ||
|
||
Args: | ||
values: row of random values matrix | ||
|
||
Returns: mean of row | ||
|
||
""" | ||
vfunc = np.vectorize(self.func) | ||
return 1 / len(values) * np.sum(vfunc(values)) | ||
|
||
def _estimator(self, random_matrix: np._typing.NDArray) -> tuple[float, np._typing.NDArray]: | ||
"""Find mean of all rows | ||
|
||
Args: | ||
random_matrix: matrix of random values | ||
|
||
Returns: mean of all rows | ||
|
||
""" | ||
values = np.array(list(map(self._independent_estimator, random_matrix))) | ||
return 1 / self.count * np.sum(values), values | ||
|
||
def _update_independent_estimator(self, i: int, old_value: float, new_values: np._typing.NDArray) -> float: | ||
"""Update mean of row | ||
|
||
Args: | ||
i: step count | ||
old_value: previous value of row on i-1 step | ||
new_values: new generated row of random values | ||
|
||
Returns: Updated mean of row | ||
|
||
""" | ||
return (i * old_value + (i + self.base_n) * self._independent_estimator(new_values[: i * self.base_n])) / ( | ||
2 * i + self.base_n | ||
) | ||
|
||
def _update( | ||
self, j: int, old_values: np._typing.NDArray, random_matrix: np._typing.NDArray | ||
) -> tuple[float, np._typing.NDArray]: | ||
"""Update mean of all rows | ||
|
||
Args: | ||
j: step count | ||
old_values: previous values of row on i-1 step | ||
random_matrix: new generated matrix of random values | ||
|
||
Returns:Updated mean of all rows | ||
|
||
""" | ||
values = [] | ||
sum_of_new: float = 0.0 | ||
for i in range(self.count): | ||
old_value, new_values = old_values[i], random_matrix[i] | ||
value = self._update_independent_estimator(j, old_value, new_values) | ||
values.append(value) | ||
sum_of_new += value | ||
values = np.array(values) | ||
return (1 / self.count) * sum_of_new, values | ||
|
||
def _sigma(self, values: np._typing.NDArray, approximation: float) -> float: | ||
"""Calculate parameter sigma for estimation | ||
|
||
Args: | ||
values: | ||
approximation: | ||
|
||
Returns: return sigma parameter | ||
|
||
""" | ||
diff = np.sum(np.power(values - approximation, 2)) | ||
return np.sqrt(1 / (self.count - 1) * diff) | ||
|
||
def rqmc(self) -> tuple[float, float]: | ||
"""Main function of algorithm | ||
|
||
Returns: approximation for integral of function from 0 to 1 | ||
|
||
""" | ||
sobol_sampler = scipy.stats.qmc.Sobol(d=1, scramble=False) | ||
sobol_sample = np.repeat(sobol_sampler.random(self.base_n).transpose(), self.count, axis=0) | ||
xor_sample = np.array(np.random.rand(1, self.count)[0]) | ||
sample = self._digital_shift(sobol_sample, xor_sample) | ||
approximation, values = self._estimator(sample) | ||
current_error_tolerance = self._sigma(values, approximation) * self.z | ||
for i in range(1, self.i_max): | ||
if current_error_tolerance < self.error_tolerance: | ||
return approximation, current_error_tolerance | ||
sobol_sampler.reset() | ||
sobol_sample = np.repeat(sobol_sampler.random(self.base_n * i).transpose(), self.count, axis=0) | ||
sample = self._digital_shift(sobol_sample, xor_sample) | ||
approximation, values = self._update(i * self.base_n, values, sample) | ||
current_error_tolerance = self._sigma(values, approximation) * self.z | ||
return approximation, current_error_tolerance | ||
|
||
def _digital_shift(self, sobol_sequences: tpg.NDArray, xor_sample: tpg.NDArray) -> tpg.NDArray: | ||
"""Digital shift of the sobol sequence | ||
|
||
Args: | ||
sobol_sequences: B Sobol sequences with length i*N | ||
xor_sample: Sample of Uniform distribution with length B | ||
|
||
Returns: XOR Sobol sequences with xor sample | ||
|
||
""" | ||
|
||
def inner_func(sequence: tpg.NDArray, random_value: float) -> tpg.NDArray: | ||
"""Xor sequence with random value | ||
|
||
Args: | ||
sequence: Sobol sequence of length i*N | ||
random_value: Random value from sample of Uniform distribution | ||
|
||
Returns: XOR sequence with random value | ||
|
||
""" | ||
|
||
return np.array(list(map(lambda x: self._xor_float(x, random_value), sequence))) | ||
|
||
pair = list(zip(sobol_sequences, xor_sample)) | ||
sobol_sequences = np.array(list(map(lambda x: inner_func(*x), pair))) | ||
|
||
return sobol_sequences | ||
|
||
@staticmethod | ||
def _xor_float(a: float, b: float) -> float: | ||
"""XOR float values | ||
|
||
Args: | ||
a: First float value | ||
b: Second float value | ||
|
||
Returns: XOR float value | ||
|
||
""" | ||
a = int(a * (2**BITS)) | ||
b = int(b * (2**BITS)) | ||
return np.bitwise_xor(a, b) / 2**BITS | ||
|
||
def __call__(self) -> tuple[float, float]: | ||
"""Interface for users | ||
|
||
Returns: approximation for integral of function from 0 to 1 | ||
|
||
""" | ||
return self.rqmc() |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,69 @@ | ||
from typing import Callable | ||
|
||
import numpy as np | ||
import pytest | ||
|
||
from src.algorithms.support_algorithms.rqmc import RQMC | ||
|
||
|
||
def loss_func(true_func: Callable, rqms: Callable, count: int): | ||
true_value = true_func(1) - true_func(0) | ||
sum_of_diff = 0 | ||
for _ in range(count): | ||
sum_of_diff += abs(true_value - rqms()[0]) | ||
return 1 / count * sum_of_diff | ||
|
||
|
||
class TestSimplyFunctions: | ||
error_tolerance = 1e-5 | ||
|
||
def test_constant_func(self): | ||
rqmc = RQMC(lambda x: 1, error_tolerance=self.error_tolerance) | ||
assert loss_func(lambda x: x, rqmc.rqmc, 1000) < self.error_tolerance | ||
|
||
def test_linear_func(self): | ||
rqmc = RQMC(lambda x: x, error_tolerance=self.error_tolerance) | ||
assert loss_func(lambda x: np.power(x, 2) / 2, rqmc.rqmc, 100) < self.error_tolerance | ||
|
||
def test_polynom_func(self): | ||
rqmc = RQMC(lambda x: x**3 - x**2 + 1, error_tolerance=self.error_tolerance) | ||
assert loss_func(lambda x: (x**4) / 4 - (x**3) / 3 + x, rqmc.rqmc, 100) < self.error_tolerance | ||
|
||
|
||
class TestHardFunctions: | ||
error_tolerance = 1e-4 | ||
|
||
def test_trigonometric_func(self): | ||
rqmc = RQMC(lambda x: np.sin(x) + np.cos(x), error_tolerance=self.error_tolerance, i_max=100) | ||
assert loss_func(lambda x: np.sin(x) - np.cos(x), rqmc.rqmc, 100) < self.error_tolerance | ||
|
||
def test_mix_function(self): | ||
rqmc = RQMC( | ||
lambda x: (x / np.sin(x)) + (np.exp(-x) / np.cos(x)), error_tolerance=self.error_tolerance, i_max=100 | ||
) | ||
assert loss_func(lambda x: 1.79789274334 if x == 1 else 0, rqmc.rqmc, 100) | ||
|
||
def test_log_function(self): | ||
rqmc = RQMC( | ||
lambda x: np.sign(x - 0.5) * abs(np.log(abs(x - 0.5))), error_tolerance=self.error_tolerance, i_max=100 | ||
) | ||
assert loss_func(lambda x: 0, rqmc.rqmc, 100) | ||
|
||
|
||
class TestArgsParse: | ||
@pytest.mark.parametrize( | ||
"args", | ||
[ | ||
(-1, 1, 2, 1, 1), | ||
(1, -1, 2, 1, 1), | ||
(1, 1, -1, 1, 1), | ||
(1, 1, 2, -1, 1), | ||
(1, 1, 1, 1, -1), | ||
(1, 1, 3, 1, 1), | ||
(1, 1, 2, 1, 10), | ||
], | ||
) | ||
def test_args_parse(self, args): | ||
print(args) | ||
with pytest.raises(ValueError): | ||
RQMC._args_parse(*args) |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
А точно numba уже нужна?