Skip to content

AIcrowd/mapchallenge-instance-segmentation

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Installation from Source

# Clone the repository
git clone https://github.com/open-mmlab/mmdetection.git
cd mmdetection

# Create and activate a conda environment
conda create -n openmmlab python=3.8 -y
conda activate openmmlab

# Install PyTorch (adjust according to your CUDA version)
pip install torch torchvision torchaudio

# Install MMDetection from source
pip install -v -e .

# Install additional dependencies
pip install mmengine mmcv

Running MAP Challenge Instance Segmentation Experiments

Project Configuration

You can find and edit experiment configurations in the projects/mapchallenge folder. Typical configurations will include:

  • Model architectures
  • Dataset settings
  • Training parameters

Experiment Script

# Run the experiments script
bash train.sh

MAP Challenge Instance Segmentation Results

Model segm mAP segm mAP_50 segm mAP_75 segm mAP_s segm mAP_m segm mAP_l segm mAR segm mAR_50 segm mAR_75
SwinS-Mask2former 0.3110 0.7160 0.2180 0.1690 0.4420 0.0990 0.42 0.833 0.362
SwinL-Mask2former 0.3080 0.7260 0.2360 0.1710 0.4400 0.1310 0.453 0.855 0.464
Rtmdet-X 0.3910 0.7760 0.3440 0.2090 0.5440 0.2930 0.509 0.891 0.5
RTMdet-M 0.3790 0.7540 0.3170 0.2150 0.5210 0.2820 0.485 0.87 0.457
QueryInst-r50 0.2770 0.6520 0.1830 0.1380 0.3890 0.1530 0.432 0.826 0.384
QueryInst-r101 0.2780 0.6340 0.2000 0.1760 0.3910 0.1010 0.458 0.855 0.464
MaskDINO 0.584 0.9022 0.6150 0.3670 0.6911 0.9287 0.6802 0.9569 0.75

MAP Challenge Results for 0.50 IoU

Model segm mAP_50
SwinS-Mask2former 0.7160
SwinL-Mask2former 0.7260
Rtmdet-X 0.7760
RTMdet-M 0.7540
QueryInst-r50 0.6520
QueryInst-r101 0.6340
MaskDINO 0.9022

## Related Repositories

For MaskDINO experiments, you might want to check out:

About

instance segmentation experiments on Mapchallenge's dataset

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.0%
  • Other 1.0%