# Clone the repository
git clone https://github.com/open-mmlab/mmdetection.git
cd mmdetection
# Create and activate a conda environment
conda create -n openmmlab python=3.8 -y
conda activate openmmlab
# Install PyTorch (adjust according to your CUDA version)
pip install torch torchvision torchaudio
# Install MMDetection from source
pip install -v -e .
# Install additional dependencies
pip install mmengine mmcv
You can find and edit experiment configurations in the projects/mapchallenge
folder. Typical configurations will include:
- Model architectures
- Dataset settings
- Training parameters
# Run the experiments script
bash train.sh
Model | segm mAP | segm mAP_50 | segm mAP_75 | segm mAP_s | segm mAP_m | segm mAP_l | segm mAR | segm mAR_50 | segm mAR_75 |
---|---|---|---|---|---|---|---|---|---|
SwinS-Mask2former | 0.3110 | 0.7160 | 0.2180 | 0.1690 | 0.4420 | 0.0990 | 0.42 | 0.833 | 0.362 |
SwinL-Mask2former | 0.3080 | 0.7260 | 0.2360 | 0.1710 | 0.4400 | 0.1310 | 0.453 | 0.855 | 0.464 |
Rtmdet-X | 0.3910 | 0.7760 | 0.3440 | 0.2090 | 0.5440 | 0.2930 | 0.509 | 0.891 | 0.5 |
RTMdet-M | 0.3790 | 0.7540 | 0.3170 | 0.2150 | 0.5210 | 0.2820 | 0.485 | 0.87 | 0.457 |
QueryInst-r50 | 0.2770 | 0.6520 | 0.1830 | 0.1380 | 0.3890 | 0.1530 | 0.432 | 0.826 | 0.384 |
QueryInst-r101 | 0.2780 | 0.6340 | 0.2000 | 0.1760 | 0.3910 | 0.1010 | 0.458 | 0.855 | 0.464 |
MaskDINO | 0.584 | 0.9022 | 0.6150 | 0.3670 | 0.6911 | 0.9287 | 0.6802 | 0.9569 | 0.75 |
Model | segm mAP_50 |
---|---|
SwinS-Mask2former | 0.7160 |
SwinL-Mask2former | 0.7260 |
Rtmdet-X | 0.7760 |
RTMdet-M | 0.7540 |
QueryInst-r50 | 0.6520 |
QueryInst-r101 | 0.6340 |
MaskDINO | 0.9022 |
## Related Repositories
For MaskDINO experiments, you might want to check out: