Skip to content

saidineshpola/mapchallenge-instance-segmentation

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Installation from Source

# Clone the repository
git clone https://github.com/open-mmlab/mmdetection.git
cd mmdetection

# Create and activate a conda environment
conda create -n openmmlab python=3.8 -y
conda activate openmmlab

# Install PyTorch (adjust according to your CUDA version)
pip install torch torchvision torchaudio

# Install MMDetection from source
pip install -v -e .

# Install additional dependencies
pip install mmengine mmcv

Running MAP Challenge Instance Segmentation Experiments

Project Configuration

You can find and edit experiment configurations in the projects/mapchallenge folder. Typical configurations will include:

  • Model architectures
  • Dataset settings
  • Training parameters

Experiment Training Script

# Run the experiments script
bash train.sh

Test

python tools/test.py ${CONFIG_FILE from trainng} ${CHECKPOINT_FILE}  [--show] [--show-dir ${SHOW_DIR}]

MapChallenge Instance Segmentation Results

Model segm mAP segm mAP@50 segm mAP@75 segm mAP_s segm mAP_m segm mAP_l segm mAR segm mAR@50 segm mAR@75
SwinS-Mask2former 0.380 0.721 0.382 0.152 0.495 0.692 0.504 0.879 0.509
SwinL-Mask2former 0.406 0.695 0.427 0.202 0.521 0.624 0.529 0.845 0.569
RTMdet-M 0.403 0.726 0.452 0.186 0.523 0.737 0.527 0.888 0.586
RTMdet-X 0.418 0.743 0.472 0.194 0.536 0.769 0.529 0.897 0.586
QueryInst-r50 0.400 0.711 0.437 0.188 0.517 0.657 0.553 0.905 0.595
QueryInst-r101 0.406 0.689 0.44 0.184 0.524 0.665 0.581 0.914 0.655
MaskDINO 0.584 0.902 0.615 0.367 0.691 0.929 0.680 0.957 0.750

MapChallenge results at >= @0.50 IOU

Model segm mAP@50 segm mAR@50
SwinS-Mask2former 0.721 0.879
SwinL-Mask2former 0.695 0.845
RTMdet-M 0.726 0.888
RTMdet-X 0.743 0.897
QueryInst-r50 0.711 0.905
QueryInst-r101 0.689 0.914
MaskDINO 0.902 0.957

Note:

  • mAP@50/mAR@50 refers to average precision/recall at 0.50 and mAP@75/mAR@75 refers to average precision/recall at 0.75 IOU
  • segm mAP values are usually averaged over multiple IOUs from 0.5 to 0.95 with interval of 0.05
  • In metric columns, - s = small objects - m = medium objects - l = large objects

Related Repositories

For MaskDINO experiments, you might want to check out:

About

instance segmentation experiments on Mapchallenge's dataset

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.0%
  • Other 1.0%