# Clone the repository
git clone https://github.com/open-mmlab/mmdetection.git
cd mmdetection
# Create and activate a conda environment
conda create -n openmmlab python=3.8 -y
conda activate openmmlab
# Install PyTorch (adjust according to your CUDA version)
pip install torch torchvision torchaudio
# Install MMDetection from source
pip install -v -e .
# Install additional dependencies
pip install mmengine mmcv
You can find and edit experiment configurations in the projects/mapchallenge
folder. Typical configurations will include:
- Model architectures
- Dataset settings
- Training parameters
# Run the experiments script
bash train.sh
python tools/test.py ${CONFIG_FILE from trainng} ${CHECKPOINT_FILE} [--show] [--show-dir ${SHOW_DIR}]
Model | segm mAP | segm mAP@50 | segm mAP@75 | segm mAP_s | segm mAP_m | segm mAP_l | segm mAR | segm mAR@50 | segm mAR@75 |
---|---|---|---|---|---|---|---|---|---|
SwinS-Mask2former | 0.380 | 0.721 | 0.382 | 0.152 | 0.495 | 0.692 | 0.504 | 0.879 | 0.509 |
SwinL-Mask2former | 0.406 | 0.695 | 0.427 | 0.202 | 0.521 | 0.624 | 0.529 | 0.845 | 0.569 |
RTMdet-M | 0.403 | 0.726 | 0.452 | 0.186 | 0.523 | 0.737 | 0.527 | 0.888 | 0.586 |
RTMdet-X | 0.418 | 0.743 | 0.472 | 0.194 | 0.536 | 0.769 | 0.529 | 0.897 | 0.586 |
QueryInst-r50 | 0.400 | 0.711 | 0.437 | 0.188 | 0.517 | 0.657 | 0.553 | 0.905 | 0.595 |
QueryInst-r101 | 0.406 | 0.689 | 0.44 | 0.184 | 0.524 | 0.665 | 0.581 | 0.914 | 0.655 |
MaskDINO | 0.584 | 0.902 | 0.615 | 0.367 | 0.691 | 0.929 | 0.680 | 0.957 | 0.750 |
Model | segm mAP@50 | segm mAR@50 |
---|---|---|
SwinS-Mask2former | 0.721 | 0.879 |
SwinL-Mask2former | 0.695 | 0.845 |
RTMdet-M | 0.726 | 0.888 |
RTMdet-X | 0.743 | 0.897 |
QueryInst-r50 | 0.711 | 0.905 |
QueryInst-r101 | 0.689 | 0.914 |
MaskDINO | 0.902 | 0.957 |
Note:
- mAP@50/mAR@50 refers to average precision/recall at 0.50 and mAP@75/mAR@75 refers to average precision/recall at 0.75 IOU
segm mAP
values are usually averaged over multiple IOUs from 0.5 to 0.95 with interval of 0.05- In metric columns,
-
s
= small objects -m
= medium objects -l
= large objects
For MaskDINO experiments, you might want to check out: