See installation instructions.
Download the pretrained model: maskdino_swinl_50ep_300q_hid2048_3sd1_instance_maskenhanced_mask52.3ap_box59.0ap.pth
python train_net.py \
--num-gpus 1 \
--config-file configs/coco/instance-segmentation/swin/maskdino_R50_bs16_50ep_4s_dowsample1_2048.yaml \
MODEL.WEIGHTS maskdino_swinl_50ep_300q_hid2048_3sd1_instance_maskenhanced_mask52.3ap_box59.0ap.pth
python train_net.py \
--eval-only \
--num-gpus 1 \
--config-file configs/coco/instance-segmentation/swin/maskdino_R50_bs16_50ep_4s_dowsample1_2048.yaml \
DATASETS.TEST '("satellite_test",)' \
MODEL.WEIGHTS "YOU_MODEL_CHECKPOINT_PATH"
Model | segm mAP | segm mAP@50 | segm mAP@75 | segm mAP_s | segm mAP_m | segm mAP_l | segm mAR | segm mAR@50 | segm mAR@75 |
---|---|---|---|---|---|---|---|---|---|
SwinS-Mask2former | 0.3110 | 0.7160 | 0.2180 | 0.1690 | 0.4420 | 0.0990 | 0.42 | 0.833 | 0.362 |
SwinL-Mask2former | 0.3080 | 0.7260 | 0.2360 | 0.1710 | 0.4400 | 0.1310 | 0.453 | 0.855 | 0.464 |
Rtmdet-X | 0.3910 | 0.7760 | 0.3440 | 0.2090 | 0.5440 | 0.2930 | 0.509 | 0.891 | 0.5 |
RTMdet-M | 0.3790 | 0.7540 | 0.3170 | 0.2150 | 0.5210 | 0.2820 | 0.485 | 0.87 | 0.457 |
QueryInst-r50 | 0.2770 | 0.6520 | 0.1830 | 0.1380 | 0.3890 | 0.1530 | 0.432 | 0.826 | 0.384 |
QueryInst-r101 | 0.2780 | 0.6340 | 0.2000 | 0.1760 | 0.3910 | 0.1010 | 0.458 | 0.855 | 0.464 |
MaskDINO | 0.584 | 0.9022 | 0.6150 | 0.3670 | 0.6911 | 0.9287 | 0.6802 | 0.9569 | 0.75 |
Note:
-
mAP@50/mAR@50 refers to average precision/recall at
IoU>=0.50
and mAP@75/mAR@75 refers to average precision/recall atIOU >= 0.75
. -
segm mAP
values are usually averaged over multiple IOUs from 0.5 to 0.95 with interval of 0.05 -
In metric columns, -
s
= small objects -m
= medium objects -l
= large objects
For full usage and detailed instructions, refer to Detectron2 Getting Started Guide.