Skip to content

[CVPR 2023] Official implementation of the paper "Mask DINO: Towards A Unified Transformer-based Framework for Object Detection and Segmentation"

License

Notifications You must be signed in to change notification settings

AIcrowd/MaskDINO-mapchallenge

 
 

Repository files navigation

Mask DINO for MapChallenge Instance Segmentation

Installation

See installation instructions.

Pretrained Model

Download the pretrained model: maskdino_swinl_50ep_300q_hid2048_3sd1_instance_maskenhanced_mask52.3ap_box59.0ap.pth

Training

python train_net.py \
     --num-gpus 1 \
     --config-file configs/coco/instance-segmentation/swin/maskdino_R50_bs16_50ep_4s_dowsample1_2048.yaml \
     MODEL.WEIGHTS maskdino_swinl_50ep_300q_hid2048_3sd1_instance_maskenhanced_mask52.3ap_box59.0ap.pth

Evaluation

python train_net.py \
     --eval-only \
     --num-gpus 1 \
     --config-file configs/coco/instance-segmentation/swin/maskdino_R50_bs16_50ep_4s_dowsample1_2048.yaml \
     DATASETS.TEST '("satellite_test",)' \
     MODEL.WEIGHTS "YOU_MODEL_CHECKPOINT_PATH"

MapChallenge Instance Segmentation Results

Model segm mAP segm mAP@50 segm mAP@75 segm mAP_s segm mAP_m segm mAP_l segm mAR segm mAR@50 segm mAR@75
SwinS-Mask2former 0.3110 0.7160 0.2180 0.1690 0.4420 0.0990 0.42 0.833 0.362
SwinL-Mask2former 0.3080 0.7260 0.2360 0.1710 0.4400 0.1310 0.453 0.855 0.464
Rtmdet-X 0.3910 0.7760 0.3440 0.2090 0.5440 0.2930 0.509 0.891 0.5
RTMdet-M 0.3790 0.7540 0.3170 0.2150 0.5210 0.2820 0.485 0.87 0.457
QueryInst-r50 0.2770 0.6520 0.1830 0.1380 0.3890 0.1530 0.432 0.826 0.384
QueryInst-r101 0.2780 0.6340 0.2000 0.1760 0.3910 0.1010 0.458 0.855 0.464
MaskDINO 0.584 0.9022 0.6150 0.3670 0.6911 0.9287 0.6802 0.9569 0.75

Note:

  • mAP@50/mAR@50 refers to average precision/recall at IoU>=0.50 and mAP@75/mAR@75 refers to average precision/recall at IOU >= 0.75.

  • segm mAP values are usually averaged over multiple IOUs from 0.5 to 0.95 with interval of 0.05

  • In metric columns, - s = small objects - m = medium objects - l = large objects

Additional Usage

For full usage and detailed instructions, refer to Detectron2 Getting Started Guide.

Related repositories

About

[CVPR 2023] Official implementation of the paper "Mask DINO: Towards A Unified Transformer-based Framework for Object Detection and Segmentation"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 86.8%
  • Cuda 11.8%
  • C++ 1.3%
  • Shell 0.1%