Skip to content

saidineshpola/MaskDINO-mapchallenge

 
 

Repository files navigation

Mask DINO for MapChallenge Instance Segmentation

Installation

See installation instructions.

Pretrained Model

Download the pretrained model: maskdino_swinl_50ep_300q_hid2048_3sd1_instance_maskenhanced_mask52.3ap_box59.0ap.pth

Training

python train_net.py \
     --num-gpus 2 \
     --config-file configs/coco/instance-segmentation/swin/maskdino_R50_bs16_50ep_4s_dowsample1_2048.yaml \
     MODEL.WEIGHTS maskdino_swinl_50ep_300q_hid2048_3sd1_instance_maskenhanced_mask52.3ap_box59.0ap.pth

Evaluation

python train_net.py \
     --eval-only \
     --num-gpus 2 \
     --config-file configs/coco/instance-segmentation/swin/maskdino_R50_bs16_50ep_4s_dowsample1_2048.yaml \
     DATASETS.TEST '("satellite_test",)' \
     MODEL.WEIGHTS MODEL_CHECKPOINT_PATH

MapChallenge Instance Segmentation Results

Model segm mAP segm mAP@50 segm mAP@75 segm mAP_s segm mAP_m segm mAP_l segm mAR segm mAR@50 segm mAR@75
SwinS-Mask2former 0.380 0.721 0.382 0.152 0.495 0.692 0.504 0.879 0.509
SwinL-Mask2former 0.406 0.695 0.427 0.202 0.521 0.624 0.529 0.845 0.569
RTMdet-M 0.403 0.726 0.452 0.186 0.523 0.737 0.527 0.888 0.586
RTMdet-X 0.418 0.743 0.472 0.194 0.536 0.769 0.529 0.897 0.586
QueryInst-r50 0.400 0.711 0.437 0.188 0.517 0.657 0.553 0.905 0.595
QueryInst-r101 0.406 0.689 0.44 0.184 0.524 0.665 0.581 0.914 0.655
MaskDINO 0.584 0.902 0.615 0.367 0.691 0.929 0.680 0.957 0.750

MapChallenge results at >= @0.50 IOU

Model segm mAP@50 segm mAR@50
SwinS-Mask2former 0.721 0.879
SwinL-Mask2former 0.695 0.845
RTMdet-M 0.726 0.888
RTMdet-X 0.743 0.897
QueryInst-r50 0.711 0.905
QueryInst-r101 0.689 0.914
MaskDINO 0.902 0.957

Note:

  • mAP@50/mAR@50 refers to average precision/recall at 0.50 and mAP@75/mAR@75 refers to average precision/recall at 0.75 IOU
  • segm mAP values are usually averaged over multiple IOUs from 0.5 to 0.95 with interval of 0.05
  • In metric columns, - s = small objects - m = medium objects - l = large objects

Additional Usage

For full usage and detailed instructions, refer to Detectron2 Getting Started Guide.

Related repositories

About

MAP challenge experiments on MaskDINO model

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 86.8%
  • Cuda 11.8%
  • C++ 1.3%
  • Shell 0.1%