Skip to content

The code for paper 'STAS: Spatial-Temporal Return Decomposition for Multi-agent Reinforcement Learning'

Notifications You must be signed in to change notification settings

zowiezhang/STAS

Repository files navigation

Spatial Temporal Attention with Shapley value (STAS)

This is the code repository of paper STAS: Spatial-Temporal Return Decomposition for Multi-agent Reinforcement Learning.

Platform and Dependencies:

  • python 3.7
  • pytorch 1.7.1
  • gym 0.10.9

Install the improved MPE

Multi-Agent Particle Environment, named MPE, is a paricle world with a continuous observation and discrete action space, along with some basic simulated physics. Used in the paper Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments. The code is referred to https://github.com/openai/multiagent-particle-envs

Improved MPE extends the original MPE to a more complicated cooperative environment with multiple agents(from 3 to 15, etc.). Used in paper PIC: Permutation Invariant Critic for Multi-Agent Deep Reinforcement Learning. The code is referred to https://github.com/IouJenLiu/PIC

## Install the improved MPE
cd envs/multiagent-particle-envs
pip install -e .

Training

To train the current version, use:

The argument 'STAS' means the current algorithm, there' s four to choose: STAS (ours), COMA, QMIX and SQDDPG. You can also change the reward_model_version to select the original STAS (v1) or STAS-ML (v2).

We use wandb by default as the default tool for experiment observation. If you prefer to use local logs, you can add --wandb at the end of the command to disable wandb.

## train in Alice and Bob
source train_AandB.sh STAS

## train in MPE
source train_MPE.sh STAS

Return decomposition model can be found in model/reward_model/mard/mard.py

Independent policy can be found in model/policy/ppo.py

All configs are set in configs/*

Citation

If you find our code or paper useful, please cite the paper:

@inproceedings{chen2024stas,
  title={STAS: Spatial-Temporal Return Decomposition for Multi-agent Reinforcement Learning},
  author={Chen, Sirui and Zhang, Zhaowei and Yang, Yaodong and Du, Yali},
  booktitle={The 38th Annual AAAI Conference on Artificial Intelligence},
  year={2024}
}

About

The code for paper 'STAS: Spatial-Temporal Return Decomposition for Multi-agent Reinforcement Learning'

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •