MediSense is a multimodal AI assistant that diagnoses diseases based on lab reports and medical images. It combines Retrieval-Augmented Generation (RAG) and Vision-Language Modeling (VLM) to provide high-quality diagnostic assistance, and anomaly detection.
- 🧬 LLM-based Diagnosis: Fine-tuned LLaMA 3.2 11B Vision model on a radiological dataset using QLoRA fine-tuning technique.
- 🔍 Hybrid RAG System: Combines BM25 + Semantic Search using Qdrant as the vector database.
- 🩻 Vision-to-Text Support: Converts medical images (e.g. X-rays) to medical descriptions for LLM input.
- 📊 Structured Lab Report Parsing: Parsing lab reports for analysis using LlamaParse while preserving the structure of the document.
- 💬 Groq-powered Inference: Uses LLaMA 3.3 70B open source LLM via Groq for high-speed inference.
- 🧠 Custom Embeddings: Uses an open-source embedding model from HuggingFace which is fine-tuned to be medically alligned.
- ☁️ Deployed on HF Inference Endpoints: Deployed the fine-tuned Vision model and the embedding model on HF Endpoints and integrated them into the FastAPI backend.
- 🔐 User & Chat Storage: Fully integrated with Supabase for storage.
Component | Model Used | Hosting |
---|---|---|
VLM | LLaMA 3.2 11B Vision (QLoRA fine-tuned) | HuggingFace Endpoint |
LLM | LLaMA 3.3 70B | Groq |
Embedding Model | medEmbed-base-v0.1 | HuggingFace Endpoint |
- Frontend: Next.js
- Backend: FastAPI
- Database: Supabase
- Vector Store: Qdrant
- RAG Framework: LangChain
git clone https://github.com/zohaibterminator/MediSense.git
cd medisense
DATABASE_URL=...
LLAMA_CLOUD_API_KEY=...
SUPABASE_URL=...
SUPABASE_KEY=...
SUPABASE_ACCESS_KEY=...
HF_TOKEN=...
VITE_BACKEND_URL=http://localhost:8000
EMBEDDING_ENDPOINT=...
GROQ_API_KEY=...
QDRANT_URL=...
QDRANT_API_KEY=...
pip install -r requirements.txt
uvicorn main:app --reload
npm i
npm run dev
This project is licensed under the MIT License.
- Hugging Face for model hosting and open-source models and datasets
- Groq for ultra-fast LLM inference
- LangChain for chaining
- Qdrant for hybrid RAG
- Meta for open-source LLMs and VLMs