This repository contains the code and data required to reproduce all experiments in our paper on simulated data (experiments in section 6.3 on FX data not included):
Lin B.Z. & Godsill S. (2025)
Bayesian Non-Parametric Inference for Lévy Measures in State-Space Models.
arXiv:2505.22587 · https://arxiv.org/abs/2505.22587In addition to reproducibility, the repository teaches the essential preliminaries for our methods—see the
Simulation_Preliminaries.ipynb
.
If you are only interested in using the methods, feel free to fork or cherry-pick.
If you wish to verify the results in the paper, clone this repo and run the notebooks as instructed below.
.
├── Simulation_Preliminaries.ipynb # method preliminaries
├── Simulated_Data_Experiments.ipynb # all simulated-data experiments
├── Simulated_Experiment_Data.npz # exact data used in the paper (≈400 kB)
│
├── Common_Tools.py # plotting & math helpers
├── Filters.py # Kalman filter + marginal likelihood
├── Levy_Generators.py # Lévy series generators
├── Levy_State_Space.py # Lévy SSM via shot-noise reps
├── ground_truths.py # ground-truth simulators
├── posteriors.py # posterior diagnostics
├── mcmc_sampler.py # main MCMC algorithm
│
├── requirements.txt
└── LICENSE
---
## Quick start
```bash
git clone https://github.com/zhl24/To_Share_BNP_Code_Base.git
cd To_Share_BNP_Code_Base
python -m venv .venv && source .venv/bin/activate # Windows: .\.venv\Scripts\activate
pip install -r requirements.txt
jupyter lab notebooks/Simulation_Preliminaries.ipynb
Each notebook can be executed top-to-bottom with Restart & Run All and
reproduces the results reported in the paper.
⸻
All experiments run on an M4 Macbook Pro
⸻
Development setup
pip install -r requirements-dev.txt
⸻
Citation
If you use this toolkit, please cite the following article:
@article{Lin_Godsill_2025,
title = {{B}ayesian {N}on-{P}arametric {I}nference for {L}\'evy {M}easures in {S}tate-{S}pace {M}odels},
author = {Lin, B. Z. and Godsill, S.},
year = {2025},
month = {May},
eprint = {2505.22587},
eprinttype = {arXiv},
url = {https://arxiv.org/abs/2505.22587},
doi = {10.48550/arXiv.2505.22587},
note = {arXiv:2505.22587 [stat]},
publisher = {arXiv}
}
⸻
License
Released under the MIT License – see the LICENSE file for full
text.