Skip to content

zhanghao00925/CG-Path_Tracing-Algorithm

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Monte Carlo Path Tracing

2018年计算机图形学课程作业

实现了Multi-importance sampleing以及多种Material。并利用OpenMP进行多线程加速。

Acknowledgements

AGraphicsGuy Peter Shirley and his book PRBT's writers

编程环境

Ubuntu 16.04LTS上进行了测试,能够成功编译运行测试场景放在assets文件夹内,运行前请将model.zip解压,运行时请注意路径是否正确。

主要依赖:

利用GLM进行矩阵运算;利用json读取Camera等参数设置;利用tinyobjloader读取模型;利用stb读取图片。

编译方法

首先需要安装GLM

sudo apt-get install libglm-dev

然后进入根目录:

mkdir build && cd build
cmake ..
make -j

运行方法

利用写好的几个.pt文件(用于记录Camera等参数)可以执行测试用的几个场景:

# 场景1:room
time ./Path-Tracing ../assets/models/Scene01/room.pt

Room

# 场景2:cup
time ./Path-Tracing ../assets/models/Scene02/cup.pt

Cup

# 场景3:veach mis
time ./Path-Tracing ../assets/models/Scene03/veach.pt

Veach Mis

# 场景4:fireplace room
time ./Path-Tracing ../assets/models/fireplace_room/fireplace_1.pt

Fireplace Room 1 Fireplace Room 2

About

2018-2019 计算机图形学 Project,Path Tracing

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published