Skip to content

zgbkdlm/gfk

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

64 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Generative diffusion posterior sampling for informative likelihoods

This implementation is associated with the paper "Generative diffusion posterior sampling for informative likelihoods" http://arxiv.org/abs/2506.01083. In the paper we develop a new approach for conditional sampling of generative diffusion models with sequential Monte Carlo methods.

Installation

Install the package via a standard procedure:

git clone git@github.com:zgbkdlm/gfk.git
cd gfk
pip install -e .

Depending on whether you need to run in a CPU/GPU, you may want to uninstall jaxand jaxlib and then reinstall.

Reproduce experiments

To exactly reproduce the numbers and figures in the paper, first run experiments:

cd experiments
python runs_gms/bash_aux.sh --dx=256 --nparticles=16384
python runs_gms/bash_aux_noiseless.sh --dx=256 --nparticles=16384
python runs_gms/bash_mcgdiff.sh --dx=256 --nparticles=16384
python runs_gms/bash_wu.sh --dx=256 --nparticles=16384

Then, run the scripts in ./summary to produce the tables and figures, e.g.,

cd experiements
python ./summary/tabulate_gms.py

will produce the table.

Citation

@article{Zhao2025b0smc, 
    author = {Zhao, Zheng}, 
    title = {Generative diffusion posterior sampling for informative likelihoods},
    journal = {arXiv preprint arXiv:2506.01083},
    year = {2025},
}

Contact

Zheng Zhao, Linköping University, https://zz.zabemon.com.

About

Generative diffusion posterior sampling for informative likelihoods

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published