Skip to content

zezhishao/DailyArXiv

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Daily Papers

The project automatically fetches the latest papers from arXiv based on keywords.

The subheadings in the README file represent the search keywords.

Only the most recent articles for each keyword are retained, up to a maximum of 100 papers.

You can click the 'Watch' button to receive daily email notifications.

Last update: 2025-09-04

Time Series

Title Date Abstract Comment
End to End Autoencoder MLP Framework for Sepsis Prediction 2025-09-02
Show

Sepsis is a life threatening condition that requires timely detection in intensive care settings. Traditional machine learning approaches, including Naive Bayes, Support Vector Machine (SVM), Random Forest, and XGBoost, often rely on manual feature engineering and struggle with irregular, incomplete time-series data commonly present in electronic health records. We introduce an end-to-end deep learning framework integrating an unsupervised autoencoder for automatic feature extraction with a multilayer perceptron classifier for binary sepsis risk prediction. To enhance clinical applicability, we implement a customized down sampling strategy that extracts high information density segments during training and a non-overlapping dynamic sliding window mechanism for real-time inference. Preprocessed time series data are represented as fixed dimension vectors with explicit missingness indicators, mitigating bias and noise. We validate our approach on three ICU cohorts. Our end-to-end model achieves accuracies of 74.6 percent, 80.6 percent, and 93.5 percent, respectively, consistently outperforming traditional machine learning baselines. These results demonstrate the framework's superior robustness, generalizability, and clinical utility for early sepsis detection across heterogeneous ICU environments.

Will You Be Aware? Eye Tracking-Based Modeling of Situational Awareness in Augmented Reality 2025-09-02
Show

Augmented Reality (AR) systems, while enhancing task performance through real-time guidance, pose risks of inducing cognitive tunneling-a hyperfocus on virtual content that compromises situational awareness (SA) in safety-critical scenarios. This paper investigates SA in AR-guided cardiopulmonary resuscitation (CPR), where responders must balance effective compressions with vigilance to unpredictable hazards (e.g., patient vomiting). We developed an AR app on a Magic Leap 2 that overlays real-time CPR feedback (compression depth and rate) and conducted a user study with simulated unexpected incidents (e.g., bleeding) to evaluate SA, in which SA metrics were collected via observation and questionnaires administered during freeze-probe events. Eye tracking analysis revealed that higher SA levels were associated with greater saccadic amplitude and velocity, and with reduced proportion and frequency of fixations on virtual content. To predict SA, we propose FixGraphPool, a graph neural network that structures gaze events (fixations, saccades) into spatiotemporal graphs, effectively capturing dynamic attentional patterns. Our model achieved 83.0% accuracy (F1=81.0%), outperforming feature-based machine learning and state-of-the-art time-series models by leveraging domain knowledge and spatial-temporal information encoded in ET data. These findings demonstrate the potential of eye tracking for SA modeling in AR and highlight its utility in designing AR systems that ensure user safety and situational awareness.

Adversarial Attacks and Defenses in Multivariate Time-Series Forecasting for Smart and Connected Infrastructures 2025-09-01
Show

The emergence of deep learning models has revolutionized various industries over the last decade, leading to a surge in connected devices and infrastructures. However, these models can be tricked into making incorrect predictions with high confidence, leading to disastrous failures and security concerns. To this end, we explore the impact of adversarial attacks on multivariate time-series forecasting and investigate methods to counter them. Specifically, we employ untargeted white-box attacks, namely the Fast Gradient Sign Method (FGSM) and the Basic Iterative Method (BIM), to poison the inputs to the training process, effectively misleading the model. We also illustrate the subtle modifications to the inputs after the attack, which makes detecting the attack using the naked eye quite difficult. Having demonstrated the feasibility of these attacks, we develop robust models through adversarial training and model hardening. We are among the first to showcase the transferability of these attacks and defenses by extrapolating our work from the benchmark electricity data to a larger, 10-year real-world data used for predicting the time-to-failure of hard disks. Our experimental results confirm that the attacks and defenses achieve the desired security thresholds, leading to a 72.41% and 94.81% decrease in RMSE for the electricity and hard disk datasets respectively after implementing the adversarial defenses.

18 pages, 34 figures
Multilevel functional distributional models with application to continuous glucose monitoring in diabetes clinical trials 2025-09-01
Show

Continuous glucose monitoring (CGM) is a minimally invasive technology that measures blood glucose every few minutes for weeks or months at a time. CGM data are often collected in the free-living environment and is strongly related to sleep, physical activity and meal intake. As the timing of these activities varies substantially within- and between-individuals, it is difficult to model CGM trajectories as a function of time of day. Therefore, in practice, CGM trajectories are often reduced to one or two scalar summaries of the thousands of measurements collected for a study participant. To alleviate the potential loss of information, the cumulative distribution function (cdf) of the CGM time series was proposed as an alternative. Here we address the problem of conducting inference on cdfs in clinical trials with long follow up and frequent measurements. Our approach provides three major innovations: (1) modeling the entire cdf and preserving its monotonicity; (2) accounting for the cdfs correlation (because they are measured on the same individual), continuity (results are robust to the choice of the probability grid), and differential error (e.g., medians have lower variability than $0.99$ quantiles); and (3) preserving the family-wise error when the observed data are longitudinal samples of cdfs. We focus on modeling data collected by The Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Group in a large clinical trial that collected CGM data every few minutes for 26 weeks. Our basic observation unit is the distribution of CGM observations in a four--week interval. The scientific goals are to: (1) identify and quantify the effects of factors that affect glycaemic control in type 1 diabetes patients (T1D); and (2) identify and characterize the patients who respond to treatment.

Data-driven Discovery of Digital Twins in Biomedical Research 2025-09-01
Show

Recent technological advances have expanded the availability of high-throughput biological datasets, enabling the reliable design of digital twins of biomedical systems or patients. Such computational tools represent key reaction networks driving perturbation or drug response and can guide drug discovery and personalized therapeutics. Yet, their development still relies on laborious data integration by the human modeler, so that automated approaches are critically needed. The success of data-driven system discovery in Physics, rooted in clean datasets and well-defined governing laws, has fueled interest in applying similar techniques in Biology, which presents unique challenges. Here, we reviewed methodologies for automatically inferring digital twins from biological time series, which mostly involve symbolic or sparse regression. We evaluate algorithms according to eight biological and methodological challenges, associated to noisy/incomplete data, multiple conditions, prior knowledge integration, latent variables, high dimensionality, unobserved variable derivatives, candidate library design, and uncertainty quantification. Upon these criteria, sparse regression generally outperformed symbolic regression, particularly when using Bayesian frameworks. We further highlight the emerging role of deep learning and large language models, which enable innovative prior knowledge integration, though the reliability and consistency of such approaches must be improved. While no single method addresses all challenges, we argue that progress in learning digital twins will come from hybrid and modular frameworks combining chemical reaction network-based mechanistic grounding, Bayesian uncertainty quantification, and the generative and knowledge integration capacities of deep learning. To support their development, we further propose a benchmarking framework to evaluate methods across all challenges.

Wavelet Policy: Imitation Policy Learning in the Scale Domain with Wavelet Transforms 2025-09-01
Show

Recent imitation learning policies, often framed as time series prediction tasks, directly map robotic observations into the action space, such as high-dimensional visual data and proprioception. When deploying at the edge, we found the underutilization of frequency domain analysis in robotic manipulation trajectory prediction leads to neglecting the inherent rhythm information embedded within action sequences, resulting in errors at critical moments. To address this, we reframe imitation learning policies through the lens of time-scale domain and introduce the Wavelet Policy. This novel approach employs wavelet transforms (WT) and new Features Extractor (FE) for feature preprocessing and extracts multi-scale features using the Single Encoder to Multiple Decoder (SE2MD) architecture. Furthermore, to enhance feature mapping in the scale domain and appropriately increase model capacity, we introduce a Learnable Scale Domain Filter (LSDF) after each decoder, improving adaptability under different visual conditions. Our results show that the Wavelet Policy maintaining a comparable parameter count outperforms SOTA end-to-end methods on four challenging simulation robotic arm tasks and real tasks, especially at critical moments and remote settings simultaneously. We release the source code and model checkpoint of simulation task at https://github.com/lurenjia384/Wavelet_Policy.

ARCANE -- Early Detection of Interplanetary Coronal Mass Ejections 2025-09-01
Show

Interplanetary coronal mass ejections (ICMEs) are major drivers of space weather disturbances, posing risks to both technological infrastructure and human activities. Automatic detection of ICMEs in solar wind in situ data is essential for early warning systems. While several methods have been proposed to identify these structures in time series data, robust real-time detection remains a significant challenge. In this work, we present ARCANE - the first framework explicitly designed for early ICME detection in streaming solar wind data under realistic operational constraints, enabling event identification without requiring observation of the full structure. Our approach evaluates the strengths and limitations of detection models by comparing a machine learning-based method to a threshold-based baseline. The ResUNet++ model, previously validated on science data, significantly outperforms the baseline, particularly in detecting high-impact events, while retaining solid performance on lower-impact cases. Notably, we find that using real-time solar wind (RTSW) data instead of high-resolution science data leads to only minimal performance degradation. Despite the challenges of operational settings, our detection pipeline achieves an F1-Score of 0.37, with an average detection delay of 24.5% of the event's duration while processing only a minimal portion of the event data. As more data becomes available, the performance increases significantly. These results mark a substantial step forward in automated space weather monitoring and lay the groundwork for enhanced real-time forecasting capabilities.

29 pa...

29 pages, 10 figures, 1 table, submitted to AGU Space Weather on 14th May 2025, revised 29th August 2025

Functional Time Series Forecasting of Distributions: A Koopman-Wasserstein Approach 2025-09-01
Show

We propose a novel method for forecasting the temporal evolution of probability distributions observed at discrete time points. Extending the Dynamic Probability Density Decomposition (DPDD), we embed distributional dynamics into Wasserstein geometry via a Koopman operator framework. Our approach introduces an importance-weighted variant of Extended Dynamic Mode Decomposition (EDMD), enabling accurate, closed-form forecasts in 2-Wasserstein space. Theoretical guarantees are established: our estimator achieves spectral convergence and optimal finite-sample Wasserstein error. Simulation studies and a real-world application to U.S. housing price distributions show substantial improvements over existing methods such as Wasserstein Autoregression. By integrating optimal transport, functional time series modeling, and spectral operator theory, DPDD offers a scalable and interpretable solution for distributional forecasting. This work has broad implications for behavioral science, public health, finance, and neuroimaging--domains where evolving distributions arise naturally. Our framework contributes to functional data analysis on non-Euclidean spaces and provides a general tool for modeling and forecasting distributional time series.

revised
User Location Disclosure Fails to Deter Overseas Criticism but Amplifies Regional Divisions on Chinese Social Media 2025-09-01
Show

We examine the behavioral impact of a user location disclosure policy on Sina Weibo, China's largest microblogging platform, using a unique high-frequency dataset of uncensored engagement, including tens of thousands of comments and replies, on prominent government and media accounts. The policy, publicly justified as a measure to curb misinformation and counter foreign influence, was abruptly rolled out on April 28, 2022. Using an interrupted time series design, we find no decline in participation by overseas users. Instead, it significantly reduced domestic engagement with local issues outside users' home provinces, particularly among critical comments. Evidence indicates this decline was not driven by generalized fear or concerns about credibility, but by a surge in regionally discriminatory replies that raised the social cost of cross-provincial engagement. Our findings suggest that identity disclosure tools can have unintended consequences by activating existing social divisions in ways that reinforce state control without direct censorship.

Main ...

Main text: 8 pages, Supplement: 38 pages

Beyond the Kolmogorov Barrier: A Learnable Weighted Hybrid Autoencoder for Model Order Reduction 2025-08-31
Show

Representation learning for high-dimensional, complex physical systems aims to identify a low-dimensional intrinsic latent space, which is crucial for reduced-order modeling and modal analysis. To overcome the well-known Kolmogorov barrier, deep autoencoders (AEs) have been introduced in recent years, but they often suffer from poor convergence behavior as the rank of the latent space increases. To address this issue, we propose the learnable weighted hybrid autoencoder, a hybrid approach that combines the strengths of singular value decomposition (SVD) with deep autoencoders through a learnable weighted framework. We find that the introduction of learnable weighting parameters is essential -- without them, the resulting model would either collapse into a standard POD or fail to exhibit the desired convergence behavior. Interestingly, we empirically find that our trained model has a sharpness thousands of times smaller compared to other models. Our experiments on classical chaotic PDE systems, including the 1D Kuramoto-Sivashinsky and forced isotropic turbulence datasets, demonstrate that our approach significantly improves generalization performance compared to several competing methods. Additionally, when combining with time series modeling techniques (e.g., Koopman operator, LSTM), the proposed technique offers significant improvements for surrogate modeling of high-dimensional multi-scale PDE systems.

34 pages
Diffusion Models for Time Series Forecasting: A Survey 2025-08-31
Show

Diffusion models, initially developed for image synthesis, demonstrate remarkable generative capabilities. Recently, their application has expanded to time series forecasting (TSF), yielding promising results. Existing surveys on time series primarily focus on the application of diffusion models to time series tasks or merely provide model-by-model introductions of diffusion-based TSF models, without establishing a systematic taxonomy for existing diffusion-based TSF models. In this survey, we firstly introduce several standard diffusion models and their prevalent variants, explaining their adaptation to TSF tasks. Then, we provide a comprehensive review of diffusion models for TSF, paying special attention to the sources of conditional information and the mechanisms for integrating this conditioning within the models. In analyzing existing approaches using diffusion models for TSF, we provide a systematic categorization and a comprehensive summary of them in this survey. Furthermore, we examine several foundational diffusion models applied to TSF, alongside commonly used datasets and evaluation metrics. Finally, we discuss the progress and limitations of these approaches, as well as potential future research directions for diffusion-based TSF. Overall, this survey offers a comprehensive overview of recent progress and future prospects for diffusion models in TSF, serving as a valuable reference for researchers in the field.

A microsimulation model of behaviour change calibrated to reversal learning data 2025-08-31
Show

Behaviour change lies at the heart of many observable collective phenomena such as the transmission and control of infectious diseases, adoption of public health policies, and migration of animals to new habitats. Representing the process of individual behaviour change in computer simulations of these phenomena remains an open challenge. Often, computational models use phenomenological implementations with limited support from behavioural data. Without a strong connection to observable quantities, such models have limited utility for simulating observed and counterfactual scenarios of emergent phenomena because they cannot be validated or calibrated. Here, we present a simple stochastic microsimulation model of reversal learning that captures fundamental properties of individual behaviour change, namely, the capacity to learn based on accumulated reward signals, and the transient persistence of learned behaviour after rewards are removed or altered. The model has only two parameters, and we use approximate Bayesian computation to demonstrate that they are fully identifiable from empirical reversal learning time series data. Finally, we demonstrate how the model can be extended to account for the increased complexity of behavioural dynamics over longer time scales involving fluctuating stimuli. This work is a step towards the development and evaluation of fully identifiable individual-level behaviour change models that can function as validated submodels for complex simulations of collective behaviour change.

22 pages, 6 figures
Reduced-Order Modeling of Cyclo-Stationary Time Series Using Score-Based Generative Methods 2025-08-30
Show

Many natural systems exhibit cyclo-stationary behavior characterized by periodic forcing such as annual and diurnal cycles. We present a data-driven method leveraging recent advances in score-based generative modeling to construct reduced-order models for such cyclo-stationary time series. Our approach accurately reproduces the statistical properties and temporal correlations of the original data, enabling efficient generation of synthetic trajectories. We demonstrate the performance of the method through application to the Planet Simulator (PlaSim) climate model, constructing a reduced-order model for the 20 leading principal components of surface temperature driven by the annual cycle. The resulting surrogate model accurately reproduces the marginal and joint probability distributions, autocorrelation functions, and spatial coherence of the original climate system across multiple validation metrics. The approach offers substantial computational advantages, enabling generation of centuries of synthetic climate data in minutes compared to weeks required for equivalent full model simulations. This work opens new possibilities for efficient modeling of periodically forced systems across diverse scientific domains, providing a principled framework for balancing computational efficiency with physical fidelity in reduced-order modeling applications.

Harnessing Vision Models for Time Series Analysis: A Survey 2025-08-30
Show

Time series analysis has witnessed the inspiring development from traditional autoregressive models, deep learning models, to recent Transformers and Large Language Models (LLMs). Efforts in leveraging vision models for time series analysis have also been made along the way but are less visible to the community due to the predominant research on sequence modeling in this domain. However, the discrepancy between continuous time series and the discrete token space of LLMs, and the challenges in explicitly modeling the correlations of variates in multivariate time series have shifted some research attentions to the equally successful Large Vision Models (LVMs) and Vision Language Models (VLMs). To fill the blank in the existing literature, this survey discusses the advantages of vision models over LLMs in time series analysis. It provides a comprehensive and in-depth overview of the existing methods, with dual views of detailed taxonomy that answer the key research questions including how to encode time series as images and how to model the imaged time series for various tasks. Additionally, we address the challenges in the pre- and post-processing steps involved in this framework and outline future directions to further advance time series analysis with vision models.

Solving dynamic portfolio selection problems via score-based diffusion models 2025-08-30
Show

In this paper, we tackle the dynamic mean-variance portfolio selection problem in a {\it model-free} manner, based on (generative) diffusion models. We propose using data sampled from the real model $\mathbb P$ (which is unknown) with limited size to train a generative model $\mathbb Q$ (from which we can easily and adequately sample). With adaptive training and sampling methods that are tailor-made for time series data, we obtain quantification bounds between $\mathbb P$ and $\mathbb Q$ in terms of the adapted Wasserstein metric $\mathcal A W_2$. Importantly, the proposed adapted sampling method also facilitates {\it conditional sampling}. In the second part of this paper, we provide the stability of the mean-variance portfolio optimization problems in $\mathcal A W _2$. Then, combined with the error bounds and the stability result, we propose a policy gradient algorithm based on the generative environment, in which our innovative adapted sampling method provides approximate scenario generators. We illustrate the performance of our algorithm on both simulated and real data. For real data, the algorithm based on the generative environment produces portfolios that beat several important baselines, including the Markowitz portfolio, the equal weight (naive) portfolio, and S&P 500.

Code ...

Code available on https://github.com/fy-yuan/diffusion_dynamic_mv. v2 addresses certain typos and small issues

Orientability of Causal Relations in Time Series using Summary Causal Graphs and Faithful Distributions 2025-08-29
Show

Understanding causal relations between temporal variables is a central challenge in time series analysis, particularly when the full causal structure is unknown. Even when the full causal structure cannot be fully specified, experts often succeed in providing a high-level abstraction of the causal graph, known as a summary causal graph, which captures the main causal relations between different time series while abstracting away micro-level details. In this work, we present conditions that guarantee the orientability of micro-level edges between temporal variables given the background knowledge encoded in a summary causal graph and assuming having access to a faithful and causally sufficient distribution with respect to the true unknown graph. Our results provide theoretical guarantees for edge orientation at the micro-level, even in the presence of cycles or bidirected edges at the macro-level. These findings offer practical guidance for leveraging SCGs to inform causal discovery in complex temporal systems and highlight the value of incorporating expert knowledge to improve causal inference from observational time series data.

Time-RA: Towards Time Series Reasoning for Anomaly with LLM Feedback 2025-08-29
Show

Time series anomaly detection is critical across various domains, yet current approaches often limit analysis to mere binary anomaly classification without detailed categorization or further explanatory reasoning. To address these limitations, we propose a novel task, Time-series Reasoning for Anomaly (Time-RA) that transforms classical time series anomaly detection from a discriminative into a generative, reasoning-intensive task leveraging Large Language Models (LLMs). Also, we introduce the first real-world multimodal benchmark dataset, RATs40K, explicitly annotated for anomaly reasoning, comprising approximately 40,000 samples across 10 real-world domains. Each sample includes numeric time series data, contextual text information, and visual representations, each annotated with fine-grained categories (14 types for univariate anomalies and 6 for multivariate anomalies) and structured explanatory reasoning. We develop a sophisticated annotation framework utilizing ensemble-generated labels refined through GPT-4-driven feedback, ensuring accuracy and interpretability. Extensive benchmarking of LLMs and multimodal LLMs demonstrates the capabilities and limitations of current models, highlighting the critical role of supervised fine-tuning. Our dataset and task pave the way for significant advancements in interpretable time series anomaly detection and reasoning. The code (https://github.com/yyysjz1997/Time-RA) and dataset (https://huggingface.co/datasets/Time-RA/RATs40K) have been fully open-sourced to support and accelerate future research in this area.

Under...

Under review. 19 pages, 8 figures, 12 tables. Code and dataset are publicly available

Practically significant change points in high dimension -- measuring signal strength pro active component 2025-08-29
Show

We consider the change point testing problem for high-dimensional time series. Unlike conventional approaches, where one tests whether the difference $\delta$ of the mean vectors before and after the change point is equal to zero, we argue that the consideration of the null hypothesis $H_0:|\delta|\le\Delta$, for some norm $|\cdot|$ and a threshold $\Delta>0$, is better suited. By the formulation of the null hypothesis as a composite hypothesis, the change point testing problem becomes significantly more challenging. We develop pivotal inference for testing hypotheses of this type in the setting of high-dimensional time series, first, measuring deviations from the null vector by the $\ell_2$-norm $|\cdot|_2$ normalized by the dimension. Second, by measuring deviations using a sparsity adjusted $\ell_2$-"norm" $|\cdot |_2/\sqrt{|\cdot|0} $, where $|\cdot|0$ denotes the $\ell_0$-"norm," we propose a pivotal test procedure which intrinsically adapts to sparse alternatives in a data-driven way by pivotally estimating the set of nonzero entries of the vector $\delta$. To establish the statistical validity of our approach, we derive tail bounds of certain classes of distributions that frequently appear as limiting distributions of self-normalized statistics. As a theoretical foundation for all results, we develop a general weak invariance principle for the partial sum process $X_1^\top\xi +\cdots +X{\lfloor\lambda n\rfloor}^\top\xi$ for a time series $(X_j){j\in\mathbb{Z}}$ and a contrast vector $\xi\in\mathbb{R}^p$ under increasing dimension $p$, which is of independent interest. Finally, we investigate the finite sample properties of the tests by means of a simulation study and illustrate its application in a data example.

DLGAN : Time Series Synthesis Based on Dual-Layer Generative Adversarial Networks 2025-08-29
Show

Time series synthesis is an effective approach to ensuring the secure circulation of time series data. Existing time series synthesis methods typically perform temporal modeling based on random sequences to generate target sequences, which often struggle to ensure the temporal dependencies in the generated time series. Additionally, directly modeling temporal features on random sequences makes it challenging to accurately capture the feature information of the original time series. To address the above issues, we propose a simple but effective generative model \textbf{D}ual-\textbf{L}ayer \textbf{G}enerative \textbf{A}dversarial \textbf{N}etworks, named \textbf{DLGAN}. The model decomposes the time series generation process into two stages: sequence feature extraction and sequence reconstruction. First, these two stages form a complete time series autoencoder, enabling supervised learning on the original time series to ensure that the reconstruction process can restore the temporal dependencies of the sequence. Second, a Generative Adversarial Network (GAN) is used to generate synthetic feature vectors that align with the real-time sequence feature vectors, ensuring that the generator can capture the temporal features from real time series. Extensive experiments on four public datasets demonstrate the superiority of this model across various evaluation metrics.

8 pages, 3 figures
Stage-Diff: Stage-wise Long-Term Time Series Generation Based on Diffusion Models 2025-08-29
Show

Generative models have been successfully used in the field of time series generation. However, when dealing with long-term time series, which span over extended periods and exhibit more complex long-term temporal patterns, the task of generation becomes significantly more challenging. Long-term time series exhibit long-range temporal dependencies, but their data distribution also undergoes gradual changes over time. Finding a balance between these long-term dependencies and the drift in data distribution is a key challenge. On the other hand, long-term time series contain more complex interrelationships between different feature sequences, making the task of effectively capturing both intra-sequence and inter-sequence dependencies another important challenge. To address these issues, we propose Stage-Diff, a staged generative model for long-term time series based on diffusion models. First, through stage-wise sequence generation and inter-stage information transfer, the model preserves long-term sequence dependencies while enabling the modeling of data distribution shifts. Second, within each stage, progressive sequence decomposition is applied to perform channel-independent modeling at different time scales, while inter-stage information transfer utilizes multi-channel fusion modeling. This approach combines the robustness of channel-independent modeling with the information fusion advantages of multi-channel modeling, effectively balancing the intra-sequence and inter-sequence dependencies of long-term time series. Extensive experiments on multiple real-world datasets validate the effectiveness of Stage-Diff in long-term time series generation tasks.

8 pages, 5 figures
Change Point Detection on A Separable Model for Dynamic Networks 2025-08-29
Show

This paper studies the unsupervised change point detection problem in time series of networks using the Separable Temporal Exponential-family Random Graph Model (STERGM). Inherently, dynamic network patterns are complex due to dyadic and temporal dependence, and change points detection can identify the discrepancies in the underlying data generating processes to facilitate downstream analysis. In particular, the STERGM that utilizes network statistics and nodal attributes to represent the structural patterns is a flexible and parsimonious model to fit dynamic networks. We propose a new estimator derived from the Alternating Direction Method of Multipliers (ADMM) procedure and Group Fused Lasso (GFL) regularization to simultaneously detect multiple time points where the parameters of a time-heterogeneous STERGM have shifted. Experiments on both simulated and real data show good performance of the proposed framework, and an R package CPDstergm is developed to implement the method.

Detecting Domain Shifts in Myoelectric Activations: Challenges and Opportunities in Stream Learning 2025-08-29
Show

Detecting domain shifts in myoelectric activations poses a significant challenge due to the inherent non-stationarity of electromyography (EMG) signals. This paper explores the detection of domain shifts using data stream (DS) learning techniques, focusing on the DB6 dataset from the Ninapro database. We define domains as distinct time-series segments based on different subjects and recording sessions, applying Kernel Principal Component Analysis (KPCA) with a cosine kernel to pre-process and highlight these shifts. By evaluating multiple drift detection methods such as CUSUM, Page-Hinckley, and ADWIN, we reveal the limitations of current techniques in achieving high performance for real-time domain shift detection in EMG signals. Our results underscore the potential of streaming-based approaches for maintaining stable EMG decoding models, while highlighting areas for further research to enhance robustness and accuracy in real-world scenarios.

16 pa...

16 pages, 5 figures, 1 table, PRICAI25

CALM: A Framework for Continuous, Adaptive, and LLM-Mediated Anomaly Detection in Time-Series Streams 2025-08-29
Show

The detection of anomalies in non-stationary time-series streams is a critical but challenging task across numerous industrial and scientific domains. Traditional models, trained offline, suffer significant performance degradation when faced with concept drift, where the underlying statistical properties of the data change over time. This paper introduces CALM (Continuous, Adaptive, and LLM-Mediated), a novel, end-to-end framework for real-time anomaly detection designed to address this challenge. CALM is built on the Apache Beam distributed processing framework and leverages the TimesFm foundation model for forecasting-based anomaly detection. The framework's novelty lies in two core contributions. First, it implements a closed-loop, continuous fine-tuning mechanism that allows the anomaly detection model to adapt to evolving data patterns in near real-time. Second, it introduces an LLM-as-a-Judge component, a Large Language Model that provides semantic, context-aware judgments on detected anomalies to curate a high-quality training dataset, deciding whether an anomaly represents transient noise or a meaningful pattern shift. We evaluate CALM on the comprehensive TSB-UAD benchmark. Our results demonstrate that the continuously fine-tuned model improves the ROC AUC score in most datasets compared to the static, pre-trained base model, validating the efficacy of our adaptive, LLM-guided approach to maintaining high-performance anomaly detection in dynamic streaming environments.

Conditionally specified graphical modeling of stationary multivariate time series 2025-08-28
Show

Graphical models are ubiquitous for summarizing conditional relations in multivariate data. In many applications involving multivariate time series, it is of interest to learn an interaction graph that treats each individual time series as nodes of the graph, with the presence of an edge between two nodes signifying conditional dependence given the others. Typically, the partial covariance is used as a measure of conditional dependence. However, in many applications, the outcomes may not be Gaussian and/or could be a mixture of different outcomes. For such time series using the partial covariance as a measure of conditional dependence may be restrictive. In this article, we propose a broad class of time series models which are specifically designed to succinctly encode process-wide conditional independence in its parameters. For each univariate component in the time series, we model its conditional distribution with a distribution from the exponential family. We develop a notion of process-wide compatibility under which such conditional specifications can be stitched together to form a well-defined strictly stationary multivariate time series. We call this construction a conditionally exponential stationary graphical model (CEStGM). A central quantity underlying CEStGM is a positive kernel which we call the interaction kernel. Spectral properties of such positive kernel operators constitute a core technical foundation of this work. We establish process-wide local and global Markov properties of CEStGM exploiting a Hammersley-Clifford type decomposition of the interaction kernel. Further, we study various probabilistic properties of CEStGM and show that it is geometrically mixing. An approximate Gibbs sampler is also developed to simulate sample paths of CEStGM.

Deep Residual Echo State Networks: exploring residual orthogonal connections in untrained Recurrent Neural Networks 2025-08-28
Show

Echo State Networks (ESNs) are a particular type of untrained Recurrent Neural Networks (RNNs) within the Reservoir Computing (RC) framework, popular for their fast and efficient learning. However, traditional ESNs often struggle with long-term information processing. In this paper, we introduce a novel class of deep untrained RNNs based on temporal residual connections, called Deep Residual Echo State Networks (DeepResESNs). We show that leveraging a hierarchy of untrained residual recurrent layers significantly boosts memory capacity and long-term temporal modeling. For the temporal residual connections, we consider different orthogonal configurations, including randomly generated and fixed-structure configurations, and we study their effect on network dynamics. A thorough mathematical analysis outlines necessary and sufficient conditions to ensure stable dynamics within DeepResESN. Our experiments on a variety of time series tasks showcase the advantages of the proposed approach over traditional shallow and deep RC.

10 pages, 6 figures
Detection of collective and point anomalies at the presence of trend and seasonality 2025-08-28
Show

Detecting anomalies in time series data is a challenging task with broad relevance in many applications. Existing methods work effectively only under idealized conditions, typically focusing on point anomalies or assuming a constant baseline. Our approach overcomes these limitations by detecting both collective and point anomalies, while allowing for polynomial trends and seasonal patterns. We establish statistical theory demonstrating that our method accurately decomposes the time series into anomaly, trend, seasonality, and a remainder component. We further show that it estimates the number of anomalies consistently and their locations with minimal error. Simulation studies confirm its strong detection performance with finite samples, and an application to energy price data illustrates its practical utility. An R package is available on request.

Automating the Deep Space Network Data Systems; A Case Study in Adaptive Anomaly Detection through Agentic AI 2025-08-28
Show

The Deep Space Network (DSN) is NASA's largest network of antenna facilities that generate a large volume of multivariate time-series data. These facilities contain DSN antennas and transmitters that undergo degradation over long periods of time, which may cause costly disruptions to the data flow and threaten the earth-connection of dozens of spacecraft that rely on the Deep Space Network for their lifeline. The purpose of this study was to experiment with different methods that would be able to assist JPL engineers with directly pinpointing anomalies and equipment degradation through collected data, and continue conducting maintenance and operations of the DSN for future space missions around our universe. As such, we have researched various machine learning techniques that can fully reconstruct data through predictive analysis, and determine anomalous data entries within real-time datasets through statistical computations and thresholds. On top of the fully trained and tested machine learning models, we have also integrated the use of a reinforcement learning subsystem that classifies identified anomalies based on severity level and a Large Language Model that labels an explanation for each anomalous data entry, all of which can be improved and fine-tuned over time through human feedback/input. Specifically, for the DSN transmitters, we have also implemented a full data pipeline system that connects the data extraction, parsing, and processing workflow all together as there was no coherent program or script for performing these tasks before. Using this data pipeline system, we were able to then also connect the models trained from DSN antenna data, completing the data workflow for DSN anomaly detection. This was all wrapped around and further connected by an agentic AI system, where complex reasoning was utilized to determine the classifications and predictions of anomalous data.

Compositionality in Time Series: A Proof of Concept using Symbolic Dynamics and Compositional Data Augmentation 2025-08-28
Show

This work investigates whether time series of natural phenomena can be understood as being generated by sequences of latent states which are ordered in systematic and regular ways. We focus on clinical time series and ask whether clinical measurements can be interpreted as being generated by meaningful physiological states whose succession follows systematic principles. Uncovering the underlying compositional structure will allow us to create synthetic data to alleviate the notorious problem of sparse and low-resource data settings in clinical time series forecasting, and deepen our understanding of clinical data. We start by conceptualizing compositionality for time series as a property of the data generation process, and then study data-driven procedures that can reconstruct the elementary states and composition rules of this process. We evaluate the success of this methods using two empirical tests originating from a domain adaptation perspective. Both tests infer the similarity of the original time series distribution and the synthetic time series distribution from the similarity of expected risk of time series forecasting models trained and tested on original and synthesized data in specific ways. Our experimental results show that the test set performance achieved by training on compositionally synthesized data is comparable to training on original clinical time series data, and that evaluation of models on compositionally synthesized test data shows similar results to evaluating on original test data, outperforming randomization-based data augmentation. An additional downstream evaluation of the prediction task of sequential organ failure assessment (SOFA) scores shows significant performance gains when model training is entirely based on compositionally synthesized data compared to training on original data.

STDiff: A State Transition Diffusion Framework for Time Series Imputation in Industrial Systems 2025-08-28
Show

Most deep learning methods for imputing missing values treat the task as completing patterns within a fixed time window. This assumption often fails in industrial systems, where dynamics are driven by control actions, are highly non-stationary, and can experience long, uninterrupted gaps. We propose STDiff, which reframes imputation as learning how the system evolves from one state to the next. STDiff uses a conditional denoising diffusion model with a causal bias aligned to control theory, generating missing values step-by-step based on the most recent known state and relevant control or environmental inputs. On a public wastewater treatment dataset with simulated missing blocks, STDiff consistently achieves the lowest errors, with its advantage increasing for longer gaps. On a raw industrial dataset with substantial real gaps, it produces trajectories that remain dynamically plausible, in contrast to window-based models that tend to flatten or over-smooth. These results support dynamics-aware, explicitly conditioned imputation as a robust approach for industrial time series, and we discuss computational trade-offs and extensions to broader domains.

VisiTrail: A Cognitive Visualization Tool for Time-Series Analysis of Eye Tracking Data from Attention Game 2025-08-28
Show

Eye Tracking (ET) can help to understand visual attention and cognitive processes in interactive environments. In attention tasks, distinguishing between relevant target objects and distractors is crucial for effective performance, yet the underlying gaze patterns that drive successful task completion remain incompletely understood. Traditional gaze analyses lack comprehensive insights into the temporal dynamics of attention allocation and the relationship between gaze behavior and task performance. When applied to complex visual search scenarios, current gaze analysis methods face several limitations, including the isolation of measurements, visual stability, search efficiency, and the decision-making processes involved in these scenarios. This paper proposes an analysis tool that considers time series for eye tracking data from task performance and also gaze measures (fixations, saccades and smooth pursuit); temporal pattern analysis that reveals how attention evolves throughout task performance; object-click sequence tracking that directly links visual attention to user actions; and performance metrics that quantify both accuracy and efficiency. This tool provides comprehensive visualization techniques that make complex patterns of stimuli and gaze connections interpretable.

A Time Series Analysis of Malware Uploads to Programming Language Ecosystems 2025-08-28
Show

Software ecosystems built around programming languages have greatly facilitated software development. At the same time, their security has increasingly been acknowledged as a problem. To this end, the paper examines the previously overlooked longitudinal aspects of software ecosystem security, focusing on malware uploaded to six popular programming language ecosystems. The dataset examined is based on the new Open Source Vulnerabilities (OSV) database. According to the results, records about detected malware uploads in the database have recently surpassed those addressing vulnerabilities in packages distributed in the ecosystems. In the early 2025 even up to 80% of all entries in the OSV have been about malware. Regarding time series analysis of malware frequencies and their shares to all database entries, good predictions are available already by relatively simple autoregressive models using the numbers of ecosystems, security advisories, and media and other articles as predictors. With these results and the accompanying discussion, the paper improves and advances the understanding of the thus far overlooked longitudinal aspects of ecosystems and malware.

Proce...

Proceedings of the 20th International Conference on Availability, Reliability and Security (ARES 2025), Ghent, Springer, pp. 269-285. Please note that this version diverges from the publisher's definite version. A new version will be uploaded once the publisher's embargo period is over

On Identifying Why and When Foundation Models Perform Well on Time-Series Forecasting Using Automated Explanations and Rating 2025-08-28
Show

Time-series forecasting models (TSFM) have evolved from classical statistical methods to sophisticated foundation models, yet understanding why and when these models succeed or fail remains challenging. Despite this known limitation, time series forecasting models are increasingly used to generate information that informs real-world actions with equally real consequences. Understanding the complexity, performance variability, and opaque nature of these models then becomes a valuable endeavor to combat serious concerns about how users should interact with and rely on these models' outputs. This work addresses these concerns by combining traditional explainable AI (XAI) methods with Rating Driven Explanations (RDE) to assess TSFM performance and interpretability across diverse domains and use cases. We evaluate four distinct model architectures: ARIMA, Gradient Boosting, Chronos (time-series specific foundation model), Llama (general-purpose; both fine-tuned and base models) on four heterogeneous datasets spanning finance, energy, transportation, and automotive sales domains. In doing so, we demonstrate that feature-engineered models (e.g., Gradient Boosting) consistently outperform foundation models (e.g., Chronos) in volatile or sparse domains (e.g., power, car parts) while providing more interpretable explanations, whereas foundation models excel only in stable or trend-driven contexts (e.g., finance).

8 pag...

8 pages, 5 Tables, 5 Figures, AI Trustworthiness and Risk Assessment for Challenged Contexts (ATRACC), Appendix

CT-PatchTST: Channel-Time Patch Time-Series Transformer for Long-Term Renewable Energy Forecasting 2025-08-28
Show

Accurate forecasting of renewable energy generation is fundamental to enhancing the dynamic performance of modern power grids, especially under high renewable penetration. This paper presents Channel-Time Patch Time-Series Transformer (CT-PatchTST), a novel deep learning model designed to provide long-term, high-fidelity forecasts of wind and solar power. Unlike conventional time-series models, CT-PatchTST captures both temporal dependencies and inter-channel correlations-features that are critical for effective energy storage planning, control, and dispatch. Reliable forecasting enables proactive deployment of energy storage systems (ESSs), helping to mitigate uncertainties in renewable output, reduce system response time, and optimize storage operation based on location-specific flow and voltage conditions. Evaluated on real-world datasets from Denmark's offshore wind, onshore wind, and solar generation, CT-PatchTST outperforms existing methods in both accuracy and robustness. By enabling predictive, data-driven coordination of ESSs across integrated source-grid-load-storage systems, this work contributes to the design of more stable, responsive, and cost-efficient power networks.

SleepDIFFormer: Sleep Stage Classification via Multivariate Differential Transformer 2025-08-28
Show

Classification of sleep stages is essential for assessing sleep quality and diagnosing sleep disorders. However, manual inspection of EEG characteristics for each stage is time-consuming and prone to human error. Although machine learning and deep learning methods have been actively developed, they continue to face challenges from the non-stationarity and variability of electroencephalography (EEG) and electrooculography (EOG) signals across different domains (i.e., datasets), often leading to poor generalization. This work proposed a Sleep Stage Classification method by developing Multivariate Differential Transformer (SleepDIFFormer) for joint EEG and EOG representation learning. Specifically, SleepDIFFormer was developed to process EEG and EOG signals using our Multivariate Differential Transformer Architecture (MDTA) for time series, trained with cross-domain alignment. Our method mitigated spatial and temporal attention noise while learning a domain-invariant joint EEG-EOG representation through feature distribution alignment, thereby enabling generalization to unseen target datasets. Empirically, we evaluated our method on five different sleep staging datasets and compared it with existing approaches, achieving state-of-the-art performance. We also conducted a thorough ablation analysis of SleepDIFFormer and interpreted the differential attention weights, highlighting their relevance to characteristic sleep EEG patterns. These findings have implications for advancing automated sleep stage classification and its application to sleep quality assessment. Our source code is publicly available at https://github.com/Ben1001409/SleepDIFFormer

Sleep...

SleepDIFFormer 8 Pages

Adaptive Segmentation of EEG for Machine Learning Applications 2025-08-28
Show

Objective. Electroencephalography (EEG) data is derived by sampling continuous neurological time series signals. In order to prepare EEG signals for machine learning, the signal must be divided into manageable segments. The current naive approach uses arbitrary fixed time slices, which may have limited biological relevance because brain states are not confined to fixed intervals. We investigate whether adaptive segmentation methods are beneficial for machine learning EEG analysis. Approach. We introduce a novel adaptive segmentation method, CTXSEG, that creates variable-length segments based on statistical differences in the EEG data and propose ways to use them with modern machine learning approaches that typically require fixed-length input. We assess CTXSEG using controllable synthetic data generated by our novel signal generator CTXGEN. While our CTXSEG method has general utility, we validate it on a real-world use case by applying it to an EEG seizure detection problem. We compare the performance of CTXSEG with fixed-length segmentation in the preprocessing step of a typical EEG machine learning pipeline for seizure detection. Main results. We found that using CTXSEG to prepare EEG data improves seizure detection performance compared to fixed-length approaches when evaluated using a standardized framework, without modifying the machine learning method, and requires fewer segments. Significance. This work demonstrates that adaptive segmentation with CTXSEG can be readily applied to modern machine learning approaches, with potential to improve performance. It is a promising alternative to fixed-length segmentation for signal preprocessing and should be considered as part of the standard preprocessing repertoire in EEG machine learning applications.

Bounds in Wasserstein Distance for Locally Stationary Processes 2025-08-27
Show

Locally stationary (LSPs) constitute an essential modeling paradigm for capturing the nuanced dynamics inherent in time series data whose statistical characteristics, including mean and variance, evolve smoothly across time. In this paper, we introduce a novel conditional probability distribution estimator specifically tailored for LSPs, employing the Nadaraya-Watson (NW) kernel smoothing methodology. The NW estimator, a prominent local averaging technique, leverages kernel smoothing to approximate the conditional distribution of a response variable given its covariates. We rigorously establish convergence rates for the NW-based conditional probability estimator in the univariate setting under the Wasserstein metric, providing explicit bounds and conditions that guarantee optimal performance. Extending this theoretical framework, we subsequently generalize our analysis to the multivariate scenario using the sliced Wasserstein distance, an approach particularly advantageous in circumventing the computational and analytical challenges typically associated with high-dimensional settings. To corroborate our theoretical contributions, we conduct extensive numerical simulations on synthetic datasets and provide empirical validations using real-world data, highlighting the estimator's practical relevance and effectiveness in capturing intricate temporal dependencies and underscoring its relevance for analyzing complex nonstationary phenomena.

Filter then Attend: Improving attention-based Time Series Forecasting with Spectral Filtering 2025-08-27
Show

Transformer-based models are at the forefront in long time-series forecasting (LTSF). While in many cases, these models are able to achieve state of the art results, they suffer from a bias toward low-frequencies in the data and high computational and memory requirements. Recent work has established that learnable frequency filters can be an integral part of a deep forecasting model by enhancing the model's spectral utilization. These works choose to use a multilayer perceptron to process their filtered signals and thus do not solve the issues found with transformer-based models. In this paper, we establish that adding a filter to the beginning of transformer-based models enhances their performance in long time-series forecasting. We add learnable filters, which only add an additional $\approx 1000$ parameters to several transformer-based models and observe in multiple instances 5-10 % relative improvement in forecasting performance. Additionally, we find that with filters added, we are able to decrease the embedding dimension of our models, resulting in transformer-based architectures that are both smaller and more effective than their non-filtering base models. We also conduct synthetic experiments to analyze how the filters enable Transformer-based models to better utilize the full spectrum for forecasting.

The Coherent Multiplex: Scalable Real-Time Wavelet Coherence Architecture 2025-08-27
Show

The Coherent Multiplex is formalized and validated as a scalable, real-time system for identifying, analyzing, and visualizing coherence among multiple time series. Its architecture comprises a fast spectral similarity layer based on cosine similarity metrics of Fourier-transformed signals, and a sparse time-frequency layer for wavelet coherence. The system constructs and evolves a multilayer graph representing inter-signal relationships, enabling low-latency inference and monitoring. A simulation prototype demonstrates functionality across 8 synthetic channels with a high similarity threshold for further computation, with additional opportunities for scaling the architecture up to support thousands of input signals with constrained hardware. Applications discussed include neuroscience, finance, and biomedical signal analysis.

Submi...

Submitted to International Symposium for Signal Processing 2025

Short-Horizon Predictive Maintenance of Industrial Pumps Using Time-Series Features and Machine Learning 2025-08-27
Show

This study presents a machine learning framework for forecasting short-term faults in industrial centrifugal pumps using real-time sensor data. The approach aims to predict {EarlyWarning} conditions 5, 15, and 30 minutes in advance based on patterns extracted from historical operation. Two lookback periods, 60 minutes and 120 minutes, were evaluated using a sliding window approach. For each window, statistical features including mean, standard deviation, minimum, maximum, and linear trend were extracted, and class imbalance was addressed using the SMOTE algorithm. Random Forest and XGBoost classifiers were trained and tested on the labeled dataset. Results show that the Random Forest model achieved the best short-term forecasting performance with a 60-minute window, reaching recall scores of 69.2% at 5 minutes, 64.9% at 15 minutes, and 48.6% at 30 minutes. With a 120-minute window, the Random Forest model achieved 57.6% recall at 5 minutes, and improved predictive accuracy of 65.6% at both 15 and 30 minutes. XGBoost displayed similar but slightly lower performance. These findings highlight that optimal history length depends on the prediction horizon, and that different fault patterns may evolve at different timescales. The proposed method offers an interpretable and scalable solution for integrating predictive maintenance into real-time industrial monitoring systems.

Global Permutation Entropy 2025-08-27
Show

Permutation Entropy, introduced by Bandt and Pompe, is a widely used complexity measure for real-valued time series that is based on the relative order of values within consecutive segments of fixed length. After standardizing each segment to a permutation and computing the frequency distribution of these permutations, Shannon Entropy is then applied to quantify the series' complexity. We introduce Global Permutation Entropy (GPE), a novel index that considers all possible patterns of a given length, including non-consecutive ones. Its computation relies on recently developed algorithms that enable the efficient extraction of full permutation profiles. We illustrate some properties of GPE and demonstrate its effectiveness through experiments on synthetic datasets, showing that it reveals structural information not accessible through standard permutation entropy. We provide a Julia package for the calculation of GPE at `https://github.com/AThreeH1/Global-Permutation-Entropy'.

12 pages, 10 figures
The Anatomy of a Personal Health Agent 2025-08-27
Show

Health is a fundamental pillar of human wellness, and the rapid advancements in large language models (LLMs) have driven the development of a new generation of health agents. However, the application of health agents to fulfill the diverse needs of individuals in daily non-clinical settings is underexplored. In this work, we aim to build a comprehensive personal health agent that is able to reason about multimodal data from everyday consumer wellness devices and common personal health records, and provide personalized health recommendations. To understand end-users' needs when interacting with such an assistant, we conducted an in-depth analysis of web search and health forum queries, alongside qualitative insights from users and health experts gathered through a user-centered design process. Based on these findings, we identified three major categories of consumer health needs, each of which is supported by a specialist sub-agent: (1) a data science agent that analyzes personal time-series wearable and health record data, (2) a health domain expert agent that integrates users' health and contextual data to generate accurate, personalized insights, and (3) a health coach agent that synthesizes data insights, guiding users using a specified psychological strategy and tracking users' progress. Furthermore, we propose and develop the Personal Health Agent (PHA), a multi-agent framework that enables dynamic, personalized interactions to address individual health needs. To evaluate each sub-agent and the multi-agent system, we conducted automated and human evaluations across 10 benchmark tasks, involving more than 7,000 annotations and 1,100 hours of effort from health experts and end-users. Our work represents the most comprehensive evaluation of a health agent to date and establishes a strong foundation towards the futuristic vision of a personal health agent accessible to everyone.

BinConv: A Neural Architecture for Ordinal Encoding in Time-Series Forecasting 2025-08-27
Show

Recent work in time series forecasting has explored reformulating regression as a classification task. By discretizing the continuous target space into bins and predicting over a fixed set of classes, these approaches benefit from more stable training, improved uncertainty modeling, and compatibility with modern deep learning architectures. However, most existing methods rely on one-hot encoding, which ignores the inherent ordinal structure of the target values. As a result, they fail to convey information about the relative distance between predicted and true values during training. In this paper, we address this limitation by applying \textbf{Cumulative Binary Encoding} (CBE), a monotonic binary representation that transforms both model inputs and outputs. CBE implicitly preserves ordinal and magnitude information, allowing models to learn distance aware representations while operating within a classification framework. To leverage CBE effectively, we propose \textbf{BinConv}, a fully convolutional neural network architecture designed for probabilistic forecasting. We demonstrate that standard fully connected layers are not only less computationally efficient than convolutional layers when used with CBE, but also degrade forecasting performance. Our experiments on standard benchmark datasets show that BinConv achieves superior performance compared to widely used baselines in both point and probabilistic forecasting, while requiring fewer parameters and enabling faster training.

Towards Interpretable Concept Learning over Time Series via Temporal Logic Semantics 2025-08-27
Show

Time series classification is a task of paramount importance, as this kind of data often arises in safety-critical applications. However, it is typically tackled with black-box deep learning methods, making it hard for humans to understand the rationale behind their output. To take on this challenge, we propose a neuro-symbolic framework that unifies classification and explanation through direct embedding of trajectories into a space of Signal Temporal Logic (STL) concepts. By introducing a novel STL-inspired kernel that maps raw time series to their alignment with predefined STL formulae, our model jointly optimises for accuracy and interpretability, as each prediction is accompanied by the most relevant logical concepts that characterise it. This enables classification grounded in human-interpretable temporal patterns and produces both local and global symbolic explanations. Early results show competitive performance while offering high-quality logical justifications for model decisions.

Network Modeling of Asynchronous Change-Points in Multivariate Time Series 2025-08-27
Show

This article introduces a novel Bayesian method for asynchronous change-point detection in multivariate time series. This method allows for change-points to occur earlier in some (leading) series followed, after a short delay, by change-points in some other (lagging) series. Such dynamic dependence structure is common in fields such as seismology and neurology where a latent event such as an earthquake or seizure causes certain sensors to register change-points before others. We model these lead-lag dependencies via a latent directed graph and provide a hierarchical prior for learning the graph's structure and parameters. Posterior inference is made tractable by modifying particle MCMC methods designed for univariate change-point problems. We apply our method to both simulated and real datasets from the fields of seismology and neurology. In the simulated data, we find that our method outperforms competing methods in settings where the change-point locations are dependent across series. In the real data applications we show that our model can also uncover interpretable network structure.

FinCast: A Foundation Model for Financial Time-Series Forecasting 2025-08-27
Show

Financial time-series forecasting is critical for maintaining economic stability, guiding informed policymaking, and promoting sustainable investment practices. However, it remains challenging due to various underlying pattern shifts. These shifts arise primarily from three sources: temporal non-stationarity (distribution changes over time), multi-domain diversity (distinct patterns across financial domains such as stocks, commodities, and futures), and varying temporal resolutions (patterns differing across per-second, hourly, daily, or weekly indicators). While recent deep learning methods attempt to address these complexities, they frequently suffer from overfitting and typically require extensive domain-specific fine-tuning. To overcome these limitations, we introduce FinCast, the first foundation model specifically designed for financial time-series forecasting, trained on large-scale financial datasets. Remarkably, FinCast exhibits robust zero-shot performance, effectively capturing diverse patterns without domain-specific fine-tuning. Comprehensive empirical and qualitative evaluations demonstrate that FinCast surpasses existing state-of-the-art methods, highlighting its strong generalization capabilities.

A Structure-Preserving Assessment of VBPBB for Time Series Imputation Under Periodic Trends, Noise, and Missingness Mechanisms 2025-08-27
Show

Incomplete time series data present significant challenges to accurate statistical analysis, particularly when the underlying data exhibit periodic structures such as seasonal or monthly trends. Traditional imputation methods often fail to preserve these temporal dynamics, leading to biased estimates and reduced analytical integrity. In this study, we introduce and evaluate a structure-preserving imputation framework that incorporates significant periodic components into the multiple imputation process via the Variable Bandpass Periodic Block Bootstrap (VBPBB). We simulate time series data containing annual and monthly periodicities and introduce varying levels of noise representing low, moderate, and high signal-to-noise scenarios to mimic real world variability. Missing data are introduced under Missing Completely at Random (MCAR) mechanisms across a range of missingness proportions (5% - 70%). VBPBB is used to extract dominant periodic components at multiple frequencies, which are then bootstrapped and included as covariates in the Amelia II multiple imputation model. The performance of this periodicity-enhanced approach is compared against standard imputation methods that do not incorporate temporal structure. Our results demonstrate that the VBPBB-enhanced imputation framework consistently outperforms conventional approaches across all tested conditions, with the greatest performance gains observed in high-noise settings and when multiple periodic components are retained. This study addresses critical limitations in existing imputation techniques by offering a flexible, periodicity-aware solution that preserves temporal structure in incomplete time series. We further explore the methodological implications of incorporating frequency-based components and discuss future directions for advancing robust imputation in temporally correlated data environments.

24 pa...

24 pages, 6 figure and 3 tables

The Bayesian Context Trees State Space Model for time series modelling and forecasting 2025-08-26
Show

A hierarchical Bayesian framework is introduced for developing tree-based mixture models for time series, partly motivated by applications in finance and forecasting. At the top level, meaningful discrete states are identified as appropriately quantised values of some of the most recent samples. At the bottom level, a different, arbitrary base model is associated with each state. This defines a very general framework that can be used in conjunction with any existing model class to build flexible and interpretable mixture models. We call this the Bayesian Context Trees State Space Model, or the BCT-X framework. Appropriate algorithmic tools are described, which allow for effective and efficient Bayesian inference and learning; these algorithms can be updated sequentially, facilitating online forecasting. The utility of the general framework is illustrated in the particular instances when AR or ARCH models are used as base models. The latter results in a mixture model that offers a powerful way of modelling the well-known volatility asymmetries in financial data, revealing a novel, important feature of stock market index data, in the form of an enhanced leverage effect. In forecasting, the BCT-X methods are found to outperform several state-of-the-art techniques, both in terms of accuracy and computational requirements.

arXiv...

arXiv admin note: text overlap with arXiv:2106.03023

Deep Learning in Mild Cognitive Impairment Diagnosis using Eye Movements and Image Content in Visual Memory Tasks 2025-08-26
Show

The global prevalence of dementia is projected to double by 2050, highlighting the urgent need for scalable diagnostic tools. This study utilizes digital cognitive tasks with eye-tracking data correlated with memory processes to distinguish between Healthy Controls (HC) and Mild Cognitive Impairment (MCI), a precursor to dementia. A deep learning model based on VTNet was trained using eye-tracking data from 44 participants (24 MCI, 20 HCs) who performed a visual memory task. The model utilizes both time series and spatial data derived from eye-tracking. It was modified to incorporate scan paths, heat maps, and image content. These modifications also enabled testing parameters such as image resolution and task performance, analyzing their impact on model performance. The best model, utilizing $700\times700px$ resolution heatmaps, achieved 68% sensitivity and 76% specificity. Despite operating under more challenging conditions (e.g., smaller dataset size, shorter task duration, or a less standardized task), the model's performance is comparable to an Alzheimer's study using similar methods (70% sensitivity and 73% specificity). These findings contribute to the development of automated diagnostic tools for MCI. Future work should focus on refining the model and using a standardized long-term visual memory task.

13 pages, 5 figures
ReLATE+: Unified Framework for Adversarial Attack Detection, Classification, and Resilient Model Selection in Time-Series Classification 2025-08-26
Show

Minimizing computational overhead in time-series classification, particularly in deep learning models, presents a significant challenge due to the high complexity of model architectures and the large volume of sequential data that must be processed in real time. This challenge is further compounded by adversarial attacks, emphasizing the need for resilient methods that ensure robust performance and efficient model selection. To address this challenge, we propose ReLATE+, a comprehensive framework that detects and classifies adversarial attacks, adaptively selects deep learning models based on dataset-level similarity, and thus substantially reduces retraining costs relative to conventional methods that do not leverage prior knowledge, while maintaining strong performance. ReLATE+ first checks whether the incoming data is adversarial and, if so, classifies the attack type, using this insight to identify a similar dataset from a repository and enable the reuse of the best-performing associated model. This approach ensures strong performance while reducing the need for retraining, and it generalizes well across different domains with varying data distributions and feature spaces. Experiments show that ReLATE+ reduces computational overhead by an average of 77.68%, enhancing adversarial resilience and streamlining robust model selection, all without sacrificing performance, within 2.02% of Oracle.

Under...

Under review at IEEE TSMC Journal. arXiv admin note: text overlap with arXiv:2503.07882

Forecasting Multivariate Urban Data via Decomposition and Spatio-Temporal Graph Analysis 2025-08-26
Show

Long-term forecasting of multivariate urban data poses a significant challenge due to the complex spatiotemporal dependencies inherent in such datasets. This paper presents DST, a novel multivariate time-series forecasting model that integrates graph attention and temporal convolution within a Graph Neural Network (GNN) to effectively capture spatial and temporal dependencies, respectively. To enhance model performance, we apply a decomposition-based preprocessing step that isolates trend, seasonal, and residual components of the time series, enabling the learning of distinct graph structures for different time-series components. Extensive experiments on real-world urban datasets, including electricity demand, weather metrics, carbon intensity, and air pollution, demonstrate the effectiveness of DST across a range of forecast horizons, from several days to one month. Specifically, our approach achieves an average improvement of 2.89% to 9.10% in long-term forecasting accuracy over state-of-the-art time-series forecasting models.

Learning Interior Point Method for AC and DC Optimal Power Flow 2025-08-26
Show

This paper proposes a feasibility-guaranteed learning interior point method (L-IPM) to solve both AC and DC optimal power flow (OPF) problems. Given the criticality of OPF, the proposed L-IPM uses a hybrid learning model approach rather than relying solely on a simple black-box prediction. The traditional IPM follows a central path from an initial point to the optimal solution. However, each iteration involves solving large linear systems, which becomes increasingly expensive as the matrices grow more ill-conditioned in later steps. To address this, we model the IPM trajectory as a time series and train a Long Short-Term Memory (LSTM) network to project the IPM central path using only the first few stable iterations, which carry the most informative features about the path to optimality. We introduce a grid-informed methodology that enforces operational constraints on generation, voltage magnitudes, and line flows to ensure feasibility. The grid-informed LSTM serves as a tool for the IPM central path projection and, followed by a final IPM refinement step, significantly reduces the total number of iterations and time required for convergence. We use a sampling method to generate a wide range of load scenarios to improve generalization across diverse operating conditions, efficiently covering the power system's operational space. Simulation results on a 2869-bus European high-voltage transmission system show that the proposed L-IPM significantly reduces solution time by up to 94%, while maintaining accuracy and feasibility of the solution. By leveraging early iterations and bypassing the final ill-conditioned and computationally demanding steps of traditional IPM, the proposed L-IPM reduces the number of required iterations by up to 85.5%. Since solution feasibility is also guaranteed, L-IPM outperforms the conventional IPM in both computational efficiency and robustness.

Echoes of the past: A unified perspective on fading memory and echo states 2025-08-26
Show

Recurrent neural networks (RNNs) have become increasingly popular in information processing tasks involving time series and temporal data. A fundamental property of RNNs is their ability to create reliable input/output responses, often linked to how the network handles its memory of the information it processed. Various notions have been proposed to conceptualize the behavior of memory in RNNs, including steady states, echo states, state forgetting, input forgetting, and fading memory. Although these notions are often used interchangeably, their precise relationships remain unclear. This work aims to unify these notions in a common language, derive new implications and equivalences between them, and provide alternative proofs to some existing results. By clarifying the relationships between these concepts, this research contributes to a deeper understanding of RNNs and their temporal information processing capabilities.

MCI-GRU: Stock Prediction Model Based on Multi-Head Cross-Attention and Improved GRU 2025-08-26
Show

As financial markets grow increasingly complex in the big data era, accurate stock prediction has become more critical. Traditional time series models, such as GRUs, have been widely used but often struggle to capture the intricate nonlinear dynamics of markets, particularly in the flexible selection and effective utilization of key historical information. Recently, methods like Graph Neural Networks and Reinforcement Learning have shown promise in stock prediction but require high data quality and quantity, and they tend to exhibit instability when dealing with data sparsity and noise. Moreover, the training and inference processes for these models are typically complex and computationally expensive, limiting their broad deployment in practical applications. Existing approaches also generally struggle to capture unobservable latent market states effectively, such as market sentiment and expectations, microstructural factors, and participant behavior patterns, leading to an inadequate understanding of market dynamics and subsequently impact prediction accuracy. To address these challenges, this paper proposes a stock prediction model, MCI-GRU, based on a multi-head cross-attention mechanism and an improved GRU. First, we enhance the GRU model by replacing the reset gate with an attention mechanism, thereby increasing the model's flexibility in selecting and utilizing historical information. Second, we design a multi-head cross-attention mechanism for learning unobservable latent market state representations, which are further enriched through interactions with both temporal features and cross-sectional features. Finally, extensive experiments on four main stock markets show that the proposed method outperforms SOTA techniques across multiple metrics. Additionally, its successful application in real-world fund management operations confirms its effectiveness and practicality.

TimeFlow: Temporal Conditioning for Longitudinal Brain MRI Registration and Aging Analysis 2025-08-26
Show

Longitudinal brain analysis is essential for understanding healthy aging and identifying pathological deviations. Longitudinal registration of sequential brain MRI underpins such analyses. However, existing methods are limited by reliance on densely sampled time series, a trade-off between accuracy and temporal smoothness, and an inability to prospectively forecast future brain states. To overcome these challenges, we introduce \emph{TimeFlow}, a learning-based framework for longitudinal brain MRI registration. TimeFlow uses a U-Net backbone with temporal conditioning to model neuroanatomy as a continuous function of age. Given only two scans from an individual, TimeFlow estimates accurate and temporally coherent deformation fields, enabling non-linear extrapolation to predict future brain states. This is achieved by our proposed inter-/extra-polation consistency constraints applied to both the deformation fields and deformed images. Remarkably, these constraints preserve temporal consistency and continuity without requiring explicit smoothness regularizers or densely sampled sequential data. Extensive experiments demonstrate that TimeFlow outperforms state-of-the-art methods in terms of both future timepoint forecasting and registration accuracy. Moreover, TimeFlow supports novel biological brain aging analyses by differentiating neurodegenerative trajectories from normal aging without requiring segmentation, thereby eliminating the need for labor-intensive annotations and mitigating segmentation inconsistency. TimeFlow offers an accurate, data-efficient, and annotation-free framework for longitudinal analysis of brain aging and chronic diseases, capable of forecasting brain changes beyond the observed study period.

Time Series Analysis of Spiking Neural Systems via Transfer Entropy and Directed Persistent Homology 2025-08-26
Show

We present a topological framework for analysing neural time series that integrates Transfer Entropy (TE) with directed Persistent Homology (PH) to characterize information flow in spiking neural systems. TE quantifies directional influence between neurons, producing weighted, directed graphs that reflect dynamic interactions. These graphs are then analyzed using PH, enabling assessment of topological complexity across multiple structural scales and dimensions. We apply this TE+PH pipeline to synthetic spiking networks trained on logic gate tasks, image-classification networks exposed to structured and perturbed inputs, and mouse cortical recordings annotated with behavioral events. Across all settings, the resulting topological signatures reveal distinctions in task complexity, stimulus structure, and behavioral regime. Higher-dimensional features become more prominent in complex or noisy conditions, reflecting interaction patterns that extend beyond pairwise connectivity. Our findings offer a principled approach to mapping directed information flow onto global organizational patterns in both artificial and biological neural systems. The framework is generalizable and interpretable, making it well suited for neural systems with time-resolved and binary spiking data.

Network inference via approximate Bayesian computation. Illustration on a stochastic multi-population neural mass model 2025-08-26
Show

In this article, we propose an adapted sequential Monte Carlo approximate Bayesian computation (SMC-ABC) algorithm for network inference in coupled stochastic differential equations (SDEs) used for multivariate time series modeling. Our approach is motivated by neuroscience, specifically the challenge of estimating brain connectivity before and during epileptic seizures. To this end, we make four key contributions. First, we introduce a 6N-dimensional SDE to model the activity of N coupled neuronal populations, extending the (single-population) stochastic Jansen and Rit neural mass model used to describe human electroencephalography (EEG) rhythms, particularly epileptic activity. Second, we construct a reliable and efficient numerical splitting scheme for the model simulation. Third, we apply the proposed adapted SMC-ABC algorithm to the neural mass model and validate it on different types of simulated data. Compared to standard SMC-ABC, our approach significantly reduces computational cost by requiring fewer model simulations to reach the desired posterior region, thanks to the inclusion of binary parameters describing the presence or absence of coupling directions. Finally, we apply our method to real multi-channel EEG data, uncovering potential similarities in patients' brain activities across different epileptic seizures, as well as differences between pre-seizure and seizure periods.

37 pages, 22 figures
PAX-TS: Model-agnostic multi-granular explanations for time series forecasting via localized perturbations 2025-08-26
Show

Time series forecasting has seen considerable improvement during the last years, with transformer models and large language models driving advancements of the state of the art. Modern forecasting models are generally opaque and do not provide explanations for their forecasts, while well-known post-hoc explainability methods like LIME are not suitable for the forecasting context. We propose PAX-TS, a model-agnostic post-hoc algorithm to explain time series forecasting models and their forecasts. Our method is based on localized input perturbations and results in multi-granular explanations. Further, it is able to characterize cross-channel correlations for multivariate time series forecasts. We clearly outline the algorithmic procedure behind PAX-TS, demonstrate it on a benchmark with 7 algorithms and 10 diverse datasets, compare it with two other state-of-the-art explanation algorithms, and present the different explanation types of the method. We found that the explanations of high-performing and low-performing algorithms differ on the same datasets, highlighting that the explanations of PAX-TS effectively capture a model's behavior. Based on time step correlation matrices resulting from the benchmark, we identify 6 classes of patterns that repeatedly occur across different datasets and algorithms. We found that the patterns are indicators of performance, with noticeable differences in forecasting error between the classes. Lastly, we outline a multivariate example where PAX-TS demonstrates how the forecasting model takes cross-channel correlations into account. With PAX-TS, time series forecasting models' mechanisms can be illustrated in different levels of detail, and its explanations can be used to answer practical questions on forecasts.

Learning the Simplest Neural ODE 2025-08-26
Show

Since the advent of the ``Neural Ordinary Differential Equation (Neural ODE)'' paper, learning ODEs with deep learning has been applied to system identification, time-series forecasting, and related areas. Exploiting the diffeomorphic nature of ODE solution maps, neural ODEs has also enabled their use in generative modeling. Despite the rich potential to incorporate various kinds of physical information, training Neural ODEs remains challenging in practice. This study demonstrates, through the simplest one-dimensional linear model, why training Neural ODEs is difficult. We then propose a new stabilization method and provide an analytical convergence analysis. The insights and techniques presented here serve as a concise tutorial for researchers beginning work on Neural ODEs.

Accep...

Accepted SICE FES 2025

pyFAST: A Modular PyTorch Framework for Time Series Modeling with Multi-source and Sparse Data 2025-08-26
Show

Modern time series analysis demands frameworks that are flexible, efficient, and extensible. However, many existing Python libraries exhibit limitations in modularity and in their native support for irregular, multi-source, or sparse data. We introduce pyFAST, a research-oriented PyTorch framework that explicitly decouples data processing from model computation, fostering a cleaner separation of concerns and facilitating rapid experimentation. Its data engine is engineered for complex scenarios, supporting multi-source loading, protein sequence handling, efficient sequence- and patch-level padding, dynamic normalization, and mask-based modeling for both imputation and forecasting. pyFAST integrates LLM-inspired architectures for the alignment-free fusion of sparse data sources and offers native sparse metrics, specialized loss functions, and flexible exogenous data fusion. Training utilities include batch-based streaming aggregation for evaluation and device synergy to maximize computational efficiency. A comprehensive suite of classical and deep learning models (Linears, CNNs, RNNs, Transformers, and GNNs) is provided within a modular architecture that encourages extension. Released under the MIT license at GitHub, pyFAST provides a compact yet powerful platform for advancing time series research and applications.

Deep Pre-trained Time Series Features for Tree Species Classification in the Dutch Forest Inventory 2025-08-26
Show

National Forest Inventory (NFI)s serve as the primary source of forest information, providing crucial tree species distribution data. However, maintaining these inventories requires labor-intensive on-site campaigns. Remote sensing approaches, particularly when combined with machine learning, offer opportunities to update NFIs more frequently and at larger scales. While the use of Satellite Image Time Series has proven effective for distinguishing tree species through seasonal canopy reflectance patterns, current approaches rely primarily on Random Forest classifiers with hand-designed features and phenology-based metrics. Using deep features from an available pre-trained remote sensing foundation models offers a complementary strategy. These pre-trained models leverage unannotated global data and are meant to used for general-purpose applications and can then be efficiently fine-tuned with smaller labeled datasets for specific classification tasks. This work systematically investigates how deep features improve tree species classification accuracy in the Netherlands with few annotated data. Data-wise, we extracted time-series data from Sentinel-1, Sentinel-2 and ERA5 satellites data and SRTM data using Google Earth Engine. Our results demonstrate that fine-tuning a publicly available remote sensing time series foundation model outperforms the current state-of-the-art in NFI classification in the Netherlands by a large margin of up to 10% across all datasets. This demonstrates that classic hand-defined harmonic features are too simple for this task and highlights the potential of using deep AI features for data-limited application like NFI classification. By leveraging openly available satellite data and pre-trained models, this approach significantly improves classification accuracy compared to traditional methods and can effectively complement existing forest inventory processes.

Leveraging GNN to Enhance MEF Method in Predicting ENSO 2025-08-26
Show

Reliable long-lead forecasting of the El Nino Southern Oscillation (ENSO) remains a long-standing challenge in climate science. The previously developed Multimodal ENSO Forecast (MEF) model uses 80 ensemble predictions by two independent deep learning modules: a 3D Convolutional Neural Network (3D-CNN) and a time-series module. In their approach, outputs of the two modules are combined using a weighting strategy wherein one is prioritized over the other as a function of global performance. Separate weighting or testing of individual ensemble members did not occur, however, which may have limited the model to optimize the use of high-performing but spread-out forecasts. In this study, we propose a better framework that employs graph-based analysis to directly model similarity between all 80 members of the ensemble. By constructing an undirected graph whose vertices are ensemble outputs and whose weights on edges measure similarity (via RMSE and correlation), we identify and cluster structurally similar and accurate predictions. From which we obtain an optimized subset of 20 members using community detection methods. The final prediction is then obtained by averaging this optimized subset. This method improves the forecast skill through noise removal and emphasis on ensemble coherence. Interestingly, our graph-based selection shows robust statistical characteristics among top performers, offering new ensemble behavior insights. In addition, we observe that while the GNN-based approach does not always outperform the baseline MEF under every scenario, it produces more stable and consistent outputs, particularly in compound long-lead situations. The approach is model-agnostic too, suggesting that it can be applied directly to other forecasting models with gargantuan ensemble outputs, such as statistical, physical, or hybrid models.

17 pa...

17 pages, 4 figures, 2 tables

FLAegis: A Two-Layer Defense Framework for Federated Learning Against Poisoning Attacks 2025-08-26
Show

Federated Learning (FL) has become a powerful technique for training Machine Learning (ML) models in a decentralized manner, preserving the privacy of the training datasets involved. However, the decentralized nature of FL limits the visibility of the training process, relying heavily on the honesty of participating clients. This assumption opens the door to malicious third parties, known as Byzantine clients, which can poison the training process by submitting false model updates. Such malicious clients may engage in poisoning attacks, manipulating either the dataset or the model parameters to induce misclassification. In response, this study introduces FLAegis, a two-stage defensive framework designed to identify Byzantine clients and improve the robustness of FL systems. Our approach leverages symbolic time series transformation (SAX) to amplify the differences between benign and malicious models, and spectral clustering, which enables accurate detection of adversarial behavior. Furthermore, we incorporate a robust FFT-based aggregation function as a final layer to mitigate the impact of those Byzantine clients that manage to evade prior defenses. We rigorously evaluate our method against five poisoning attacks, ranging from simple label flipping to adaptive optimization-based strategies. Notably, our approach outperforms state-of-the-art defenses in both detection precision and final model accuracy, maintaining consistently high performance even under strong adversarial conditions.

15 pa...

15 pages, 5 tables, and 5 figures

Realizing Reduced and Sparse Biochemical Reaction Networks from Dynamics 2025-08-26
Show

We propose a direct optimization framework for learning reduced and sparse chemical reaction networks (CRNs) from time-series trajectory data. In contrast to widely used indirect methods-such as those based on sparse identification of nonlinear dynamics (SINDy)-which infer reaction dynamics by fitting numerically estimated derivatives, our approach fits entire trajectories by solving a dynamically constrained optimization problem. This formulation enables the construction of reduced CRNs that are both low-dimensional and sparse, while preserving key dynamical behaviors of the original system. We develop an accelerated proximal gradient algorithm to efficiently solve the resulting non-convex optimization problem. Through illustrative examples, including a Drosophila circadian oscillator and a glycolytic oscillator, we demonstrate the ability of our method to recover accurate and interpretable reduced-order CRNs. Notably, the direct approach avoids the derivative estimation step and mitigates error accumulation issues inherent in indirect methods, making it a robust alternative for data-driven CRN realizations.

Accep...

Accepted to IEEE CDC 2025. Author-accepted version; supplementary material in ancillary files (In this version, supplementary PDF is moved to ancillary files; no content changes to main article)

Dynamic Count Models with Flexible Innovation Processes for Irregular Maritime Migration 2025-08-26
Show

Motivated by the dynamics of weekly sea border crossings in the Mediterranean (2015-2025) and the English Channel (2018-2025), we develop a Bayesian dynamic framework for modeling potentially heteroskedastic count time series. Building on theoretical considerations and empirical stylized facts, our approach specifies a latent log-intensity that follows a random walk driven by either heavy-tailed or stochastic volatility innovations, incorporating an explicit mechanism to separate structural from sampling zeros. Posterior inference is carried out via a straightforward Markov chain Monte Carlo algorithm. We compare alternative innovation specifications through a comprehensive out-of-sample density forecasting exercise, evaluating each model using log predictive scores and empirical coverage up to the 99th percentile of the predictive distribution. The results of two case studies reveal strong evidence for stochastic volatility in sea migration innovations, with stochastic volatility models producing particularly well-calibrated forecasts even at extreme quantiles. The model can be used to develop risk indicators and has direct policy implications for improving governance and preparedness for sea migration surges. The presented methodology readily extends to other zero-inflated non-stationary count time series applications, including epidemiological surveillance and public safety incident monitoring.

STRATA-TS: Selective Knowledge Transfer for Urban Time Series Forecasting with Retrieval-Guided Reasoning 2025-08-26
Show

Urban forecasting models often face a severe data imbalance problem: only a few cities have dense, long-span records, while many others expose short or incomplete histories. Direct transfer from data-rich to data-scarce cities is unreliable because only a limited subset of source patterns truly benefits the target domain, whereas indiscriminate transfer risks introducing noise and negative transfer. We present STRATA-TS (Selective TRAnsfer via TArget-aware retrieval for Time Series), a framework that combines domain-adapted retrieval with reasoning-capable large models to improve forecasting in scarce data regimes. STRATA-TS employs a patch-based temporal encoder to identify source subsequences that are semantically and dynamically aligned with the target query. These retrieved exemplars are then injected into a retrieval-guided reasoning stage, where an LLM performs structured inference over target inputs and retrieved support. To enable efficient deployment, we distill the reasoning process into a compact open model via supervised fine-tuning. Extensive experiments on three parking availability datasets across Singapore, Nottingham, and Glasgow demonstrate that STRATA-TS consistently outperforms strong forecasting and transfer baselines, while providing interpretable knowledge transfer pathways.

Uncertainty Awareness on Unsupervised Domain Adaptation for Time Series Data 2025-08-26
Show

Unsupervised domain adaptation methods seek to generalize effectively on unlabeled test data, especially when encountering the common challenge in time series data that distribution shifts occur between training and testing datasets. In this paper, we propose incorporating multi-scale feature extraction and uncertainty estimation to improve the model's generalization and robustness across domains. Our approach begins with a multi-scale mixed input architecture that captures features at different scales, increasing training diversity and reducing feature discrepancies between the training and testing domains. Based on the mixed input architecture, we further introduce an uncertainty awareness mechanism based on evidential learning by imposing a Dirichlet prior on the labels to facilitate both target prediction and uncertainty estimation. The uncertainty awareness mechanism enhances domain adaptation by aligning features with the same labels across different domains, which leads to significant performance improvements in the target domain. Additionally, our uncertainty-aware model demonstrates a much lower Expected Calibration Error (ECE), indicating better-calibrated prediction confidence. Our experimental results show that this combined approach of mixed input architecture with the uncertainty awareness mechanism achieves state-of-the-art performance across multiple benchmark datasets, underscoring its effectiveness in unsupervised domain adaptation for time series data.

IEEE ...

IEEE Transactions on Multimedia

Unified theory of testing relevant hypothesis in functional time series 2025-08-26
Show

In this paper, we present a general framework for testing relevant hypotheses in functional time series. Our unified approach covers one-sample, two-sample, and change point problems under contaminated observations with arbitrary sampling schemes. By employing B-spline estimators and the self-normalization technique, we propose nuisance-parameter-free testing procedures, obviating the need for additional procedures such as estimating long-run covariance or measurement-error variance functions. A key challenge arises from related nonparametric statistics may not be tight, complicating the joint weak convergence for the test statistics and self-normalizers, particularly in sparse scenarios. To address this, we leverage a Gaussian approximation in a diverging-dimension regime to derive a pivotal approximate distribution. Then, we develop consistent decision rules, provide sufficient conditions ensuring non-degeneracy, and establish phase transition boundaries from sparse to dense. We also examine the multiple change point scenario and extend the theory when one obtains consistent estimates of the change points. The choice of self-normalizers is further discussed, including the recently developed range-adjusted self-normalizer. Extensive numerical experiments support the proposed theory, and we illustrate our methodologies using the AU.SHF implied volatility and traffic volume datasets.

A Learning-based Hybrid System Approach for Detecting Contingencies in Distribution Grids with Inverter-Based Resources 2025-08-25
Show

This paper presents a machine-learning based Stochastic Hybrid System (SHS) modeling framework to detect contingencies in active distribution networks populated with inverter-based resources (IBRs). In particular, this framework allows detecting unobservable contingencies, which cannot be identified by normal sensing systems. First, a state-space SHS model combining conventional and IRB-based resources is introduced to formulate the dynamic interaction between continuous states of distribution networks and discrete contingency events. This model forms a randomly switching system, where parameters or network topology can change due to contingencies. We consider two contingency classes: (i) physical events, such as line outages, and (ii) measurement anomalies caused by sensor faults. Leveraging multivariate time series data derived from high-frequency sampling of system states and network outputs, a time series-based learning model is trained for real-time contingency detection and classification. Simulation studies, carried out on the IEEE 33-bus distribution system, demonstrate a 96% overall detection accuracy.

6 pages, 6 figures
DRTA: Dynamic Reward Scaling for Reinforcement Learning in Time Series Anomaly Detection 2025-08-25
Show

Anomaly detection in time series data is important for applications in finance, healthcare, sensor networks, and industrial monitoring. Traditional methods usually struggle with limited labeled data, high false-positive rates, and difficulty generalizing to novel anomaly types. To overcome these challenges, we propose a reinforcement learning-based framework that integrates dynamic reward shaping, Variational Autoencoder (VAE), and active learning, called DRTA. Our method uses an adaptive reward mechanism that balances exploration and exploitation by dynamically scaling the effect of VAE-based reconstruction error and classification rewards. This approach enables the agent to detect anomalies effectively in low-label systems while maintaining high precision and recall. Our experimental results on the Yahoo A1 and Yahoo A2 benchmark datasets demonstrate that the proposed method consistently outperforms state-of-the-art unsupervised and semi-supervised approaches. These findings show that our framework is a scalable and efficient solution for real-world anomaly detection tasks.

Frozen in Time: Parameter-Efficient Time Series Transformers via Reservoir-Induced Feature Expansion and Fixed Random Dynamics 2025-08-25
Show

Transformers are the de-facto choice for sequence modelling, yet their quadratic self-attention and weak temporal bias can make long-range forecasting both expensive and brittle. We introduce FreezeTST, a lightweight hybrid that interleaves frozen random-feature (reservoir) blocks with standard trainable Transformer layers. The frozen blocks endow the network with rich nonlinear memory at no optimisation cost; the trainable layers learn to query this memory through self-attention. The design cuts trainable parameters and also lowers wall-clock training time, while leaving inference complexity unchanged. On seven standard long-term forecasting benchmarks, FreezeTST consistently matches or surpasses specialised variants such as Informer, Autoformer, and PatchTST; with substantially lower compute. Our results show that embedding reservoir principles within Transformers offers a simple, principled route to efficient long-term time-series prediction.

8 pag...

8 pages, 5 tables, 3 figures, accepted at ECAI 2025

Riemannian Change Point Detection on Manifolds with Robust Centroid Estimation 2025-08-25
Show

Non-parametric change-point detection in streaming time series data is a long-standing challenge in signal processing. Recent advancements in statistics and machine learning have increasingly addressed this problem for data residing on Riemannian manifolds. One prominent strategy involves monitoring abrupt changes in the center of mass of the time series. Implemented in a streaming fashion, this strategy, however, requires careful step size tuning when computing the updates of the center of mass. In this paper, we propose to leverage robust centroid on manifolds from M-estimation theory to address this issue. Our proposal consists of comparing two centroid estimates: the classical Karcher mean (sensitive to change) versus one defined from Huber's function (robust to change). This comparison leads to the definition of a test statistic whose performance is less sensitive to the underlying estimation method. We propose a stochastic Riemannian optimization algorithm to estimate both robust centroids efficiently. Experiments conducted on both simulated and real-world data across two representative manifolds demonstrate the superior performance of our proposed method.

An Unsupervised Deep XAI Framework for Localization of Concurrent Replay Attacks in Nuclear Reactor Signals 2025-08-25
Show

Next generation advanced nuclear reactors are expected to be smaller both in size and power output, relying extensively on fully digital instrumentation and control systems. These reactors will generate a large flow of information in the form of multivariate time series data, conveying simultaneously various non linear cyber physical, process, control, sensor, and operational states. Ensuring data integrity against deception attacks is becoming increasingly important for networked communication and a requirement for safe and reliable operation. Current efforts to address replay attacks, almost universally focus on watermarking or supervised anomaly detection approaches without further identifying and characterizing the root cause of the anomaly. In addition, these approaches rely mostly on synthetic data with uncorrelated Gaussian process and measurement noise and full state feedback or are limited to univariate signals, signal stationarity, linear quadratic regulators, or other linear-time invariant state-space which may fail to capture any unmodeled system dynamics. In the realm of regulated nuclear cyber-physical systems, additional work is needed on characterization of replay attacks and explainability of predictions using real data. Here, we propose an unsupervised explainable AI framework based on a combination of autoencoder and customized windowSHAP algorithm to fully characterize real-time replay attacks, i.e., detection, source identification, timing and type, of increasing complexity during a dynamic time evolving reactor process. The proposed XAI framework was benchmarked on several real world datasets from Purdue's nuclear reactor PUR-1 with up to six signals concurrently being replayed. In all cases, the XAI framework was able to detect and identify the source and number of signals being replayed and the duration of the falsification with 95 percent or better accuracy.

Added...

Added references, corrected typos, grammar check, authors updated

A foundation model with multi-variate parallel attention to generate neuronal activity 2025-08-25
Show

Learning from multi-variate time-series with heterogeneous channel configurations remains a fundamental challenge for deep neural networks, particularly in clinical domains such as intracranial electroencephalography (iEEG), where channel setups vary widely across subjects. In this work, we introduce multi-variate parallel attention (MVPA), a novel self-attention mechanism that disentangles content, temporal, and spatial attention, enabling flexible, generalizable, and efficient modeling of time-series data with varying channel counts and configurations. We use MVPA to build MVPFormer, a generative foundation model for human electrophysiology, trained to predict the evolution of iEEG signals across diverse subjects. To support this and future efforts by the community, we release the SWEC iEEG dataset, the largest publicly available iEEG dataset to date, comprising nearly 10,000 hours of recordings from heterogeneous clinical sources. MVPFormer leverages MVPA to achieve strong generalization across subjects, demonstrating expert-level performance in several iEEG tasks. MVPFormer surpasses state-of-the-art Transformer baselines in seizure detection across the SWEC, the MAYO, and the FNUSA datasets, while also achieving state-of-the-art performance on four Brain TreeBank iEEG decoding tasks. We further validate MVPA on standard time-series forecasting and classification tasks, where it matches or exceeds the performance of existing attention-based models. Together, our contributions establish MVPA as a general-purpose attention mechanism for heterogeneous time-series and MVPFormer as the first open-source, open-weights, and open-data iEEG foundation model with SOTA clinical performance. The code is available at https://github.com/IBM/multi-variate-parallel-transformer. The SWEC iEEG dataset is available at https://huggingface.co/datasets/NeuroTec/SWEC_iEEG_Dataset.

The c...

The code is available at https://github.com/IBM/multi-variate-parallel-transformer. The SWEC iEEG dataset is available at https://huggingface.co/datasets/NeuroTec/SWEC_iEEG_Dataset

Utilizing Multiple Testing for Grouping in Singular Spectrum Analysis 2025-08-25
Show

A key step in separating signal from noise in time series by means of singular spectrum analysis (SSA) is grouping. We present a multiple testing method for the grouping step in SSA. As separability criterion, we utilize the weighted correlation between the signal and the noise component of the (reconstructed) time series, and we test whether this weighted correlation is equal to zero. This test has to be performed for several possible groupings, resulting in a multiple test problem. The null distributions of the corresponding test statistics are approximated by a wild bootstrap procedure. The performance of our proposed method is assessed in a simulation study, and we illustrate its practical application with an analysis of real world data.

FlexTSF: A Flexible Forecasting Model for Time Series with Variable Regularities 2025-08-25
Show

Forecasting time series with irregular temporal structures remains challenging for universal pre-trained models. Existing approaches often assume regular sampling or depend heavily on imputation, limiting their applicability in real-world scenarios where irregularities are prevalent due to diverse sensing devices and recording practices. We introduce FlexTSF, a flexible forecasting model specifically designed for time series data with variable temporal regularities. At its foundation lies the IVP Patcher, a continuous-time patching module leveraging Initial Value Problems (IVPs) to inherently support uneven time intervals, variable sequence lengths, and missing values. FlexTSF employs a decoder-only architecture that integrates normalized timestamp inputs and domain-specific statistics through a specialized causal self-attention mechanism, enabling adaptability across domains. Extensive experiments on 16 datasets demonstrate FlexTSF's effectiveness, significantly outperforming existing models in classic forecasting scenarios, zero-shot generalization, and low-resource fine-tuning conditions. Ablation studies confirm the contributions of each design component and the advantage of not relying on predefined fixed patch lengths.

Tensor-product interactions in Markov-switching models 2025-08-25
Show

Markov-switching models are a powerful tool for modelling time series data that are driven by underlying latent states. As such, they are widely used in behavioural ecology, where discrete states can serve as proxies for behavioural modes and enable inference on latent behaviour driving e.g. observed movement. To understand drivers of behavioural changes, it is common to link model parameters to covariates. Over the last decade, nonparametric approaches have gained traction in this context to avoid unrealistic parametric assumptions. Nonetheless, existing methods are largely limited to univariate smooth functions of covariates, based on penalised splines, while real processes are typically complex requiring consideration of interaction effects. We address this gap by incorporating tensor-product interactions into Markov-switching models, enabling flexible modelling of multidimensional effects in a computationally efficient manner. Based on the extended Fellner-Schall method, we develop an efficient automatic smoothness selection procedure that is robust and scales well with the number of smooth functions in the model. The method builds on a random effects view of the spline coefficients and yields a recursive penalised likelihood procedure. As special cases, this general framework accommodates bivariate smoothing, function-valued random effects, and space-time interactions. We demonstrate its practical utility through three ecological case studies of an African elephant, common fruitflies, and Arctic muskoxen. The methodology is implemented in the LaMa R package, providing applied ecologists with an accessible and flexible tool for semiparametric inference in hidden-state models. The approach has the potential to drastically improve the level of detail in inference, allowing to fit HMMs with hundreds of parameters, 10-20 (potentially bivariate) smooths to thousands of observations.

CLaP -- State Detection from Time Series 2025-08-25
Show

The ever-growing amount of sensor data from machines, smart devices, and the environment leads to an abundance of high-resolution, unannotated time series (TS). These recordings encode recognizable properties of latent states and transitions from physical phenomena that can be modelled as abstract processes. The unsupervised localization and identification of these states and their transitions is the task of time series state detection (TSSD). Current TSSD algorithms employ classical unsupervised learning techniques, to infer state membership directly from feature space. This limits their predictive power, compared to supervised learning methods, which can exploit additional label information. We introduce CLaP, a new, highly accurate and efficient algorithm for TSSD. It leverages the predictive power of time series classification for TSSD in an unsupervised setting by applying novel self-supervision techniques to detect whether data segments emerge from the same state. To this end, CLaP cross-validates a classifier with segment-labelled subsequences to quantify confusion between segments. It merges labels from segments with high confusion, representing the same latent state, if this leads to an increase in overall classification quality. We conducted an experimental evaluation using 405 TS from five benchmarks and found CLaP to be significantly more precise in detecting states than six state-of-the-art competitors. It achieves the best accuracy-runtime tradeoff and is scalable to large TS. We provide a Python implementation of CLaP, which can be deployed in TS analysis workflows.

Artificial Intelligence-Based Multiscale Temporal Modeling for Anomaly Detection in Cloud Services 2025-08-25
Show

This study proposes an anomaly detection method based on the Transformer architecture with integrated multiscale feature perception, aiming to address the limitations of temporal modeling and scale-aware feature representation in cloud service environments. The method first employs an improved Transformer module to perform temporal modeling on high-dimensional monitoring data, using a self-attention mechanism to capture long-range dependencies and contextual semantics. Then, a multiscale feature construction path is introduced to extract temporal features at different granularities through downsampling and parallel encoding. An attention-weighted fusion module is designed to dynamically adjust the contribution of each scale to the final decision, enhancing the model's robustness in anomaly pattern modeling. In the input modeling stage, standardized multidimensional time series are constructed, covering core signals such as CPU utilization, memory usage, and task scheduling states, while positional encoding is used to strengthen the model's temporal awareness. A systematic experimental setup is designed to evaluate performance, including comparative experiments and hyperparameter sensitivity analysis, focusing on the impact of optimizers, learning rates, anomaly ratios, and noise levels. Experimental results show that the proposed method outperforms mainstream baseline models in key metrics, including precision, recall, AUC, and F1-score, and maintains strong stability and detection performance under various perturbation conditions, demonstrating its superior capability in complex cloud environments.

Trajectory

Title Date Abstract Comment
Using iterated local alignment to aggregate trajectory data into a traffic flow map 2025-09-01
Show

Vehicle trajectories are a promising GNSS (Global Navigation Satellite System) data source to compute multi-scale traffic flow maps ranging from the city/regional level to the road level. The main obstacle is that trajectory data are prone to measurement noise. While this is negligible for city level, large-scale flow aggregation, it poses substantial difficulties for road level, small-scale aggregation. To overcome these difficulties, we introduce innovative local alignment algorithms, where we infer road segments to serve as local reference segments, and proceed to align nearby road segments to them. We deploy these algorithms in an iterative workflow to compute locally aligned flow maps. By applying this workflow to synthetic and empirical trajectories, we verify that our locally aligned flow maps provide high levels of accuracy and spatial resolution of flow aggregation at multiple scales for static and interactive maps.

MedResearcher-R1: Expert-Level Medical Deep Researcher via A Knowledge-Informed Trajectory Synthesis Framework 2025-09-01
Show

Recent developments in Large Language Model (LLM)-based agents have shown impressive capabilities spanning multiple domains, exemplified by deep research systems that demonstrate superior performance on complex information-seeking and synthesis tasks. While general-purpose deep research agents have shown impressive capabilities, they struggle significantly with medical domain challenges, as evidenced by leading proprietary systems achieving limited accuracy on complex medical benchmarks. The key limitations are: (1) the model lacks sufficient dense medical knowledge for clinical reasoning, and (2) the framework is constrained by the absence of specialized retrieval tools tailored for medical contexts. We present a medical deep research agent that addresses these challenges through two core innovations. First, we develop a novel data synthesis framework using medical knowledge graphs, extracting the longest chains from subgraphs around rare medical entities to generate complex multi-hop question-answer pairs. Second, we integrate a custom-built private medical retrieval engine alongside general-purpose tools, enabling accurate medical information synthesis. Our approach generates 2100+ diverse trajectories across 12 medical specialties, each averaging 4.2 tool interactions. Through a two-stage training paradigm combining supervised fine-tuning and online reinforcement learning with composite rewards, our MedResearcher-R1-32B model demonstrates exceptional performance, establishing new state-of-the-art results on medical benchmarks while maintaining competitive performance on general deep research tasks. Our work demonstrates that strategic domain-specific innovations in architecture, tool design, and training data construction can enable smaller open-source models to outperform much larger proprietary systems in specialized domains.

13 pages, 5 figures
Trajectory learning for ensemble forecasts via the continuous ranked probability score: a Lorenz '96 case study 2025-08-29
Show

This paper demonstrates the feasibility of trajectory learning for ensemble forecasts by employing the continuous ranked probability score (CRPS) as a loss function. Using the two-scale Lorenz '96 system as a case study, we develop and train both additive and multiplicative stochastic parametrizations to generate ensemble predictions. Results indicate that CRPS-based trajectory learning produces parametrizations that are both accurate and sharp. The resulting parametrizations are straightforward to calibrate and outperform derivative-fitting-based parametrizations in short-term forecasts. This approach is particularly promising for data assimilation applications due to its accuracy over short lead times.

19 pa...

19 pages, 9 figures. All comments are welcome!

Temporal Flow Matching for Learning Spatio-Temporal Trajectories in 4D Longitudinal Medical Imaging 2025-08-29
Show

Understanding temporal dynamics in medical imaging is crucial for applications such as disease progression modeling, treatment planning and anatomical development tracking. However, most deep learning methods either consider only single temporal contexts, or focus on tasks like classification or regression, limiting their ability for fine-grained spatial predictions. While some approaches have been explored, they are often limited to single timepoints, specific diseases or have other technical restrictions. To address this fundamental gap, we introduce Temporal Flow Matching (TFM), a unified generative trajectory method that (i) aims to learn the underlying temporal distribution, (ii) by design can fall back to a nearest image predictor, i.e. predicting the last context image (LCI), as a special case, and (iii) supports $3D$ volumes, multiple prior scans, and irregular sampling. Extensive benchmarks on three public longitudinal datasets show that TFM consistently surpasses spatio-temporal methods from natural imaging, establishing a new state-of-the-art and robust baseline for $4D$ medical image prediction.

Dynamics-Compliant Trajectory Diffusion for Super-Nominal Payload Manipulation 2025-08-29
Show

Nominal payload ratings for articulated robots are typically derived from worst-case configurations, resulting in uniform payload constraints across the entire workspace. This conservative approach severely underutilizes the robot's inherent capabilities -- our analysis demonstrates that manipulators can safely handle payloads well above nominal capacity across broad regions of their workspace while staying within joint angle, velocity, acceleration, and torque limits. To address this gap between assumed and actual capability, we propose a novel trajectory generation approach using denoising diffusion models that explicitly incorporates payload constraints into the planning process. Unlike traditional sampling-based methods that rely on inefficient trial-and-error, optimization-based methods that are prohibitively slow, or kinodynamic planners that struggle with problem dimensionality, our approach generates dynamically feasible joint-space trajectories in constant time that can be directly executed on physical hardware without post-processing. Experimental validation on a 7 DoF Franka Emika Panda robot demonstrates that up to 67.6% of the workspace remains accessible even with payloads exceeding 3 times the nominal capacity. This expanded operational envelope highlights the importance of a more nuanced consideration of payload dynamics in motion planning algorithms.

Accep...

Accepted to 2025 Conference on Robot Learning [CoRL]

BiTrajDiff: Bidirectional Trajectory Generation with Diffusion Models for Offline Reinforcement Learning 2025-08-29
Show

Recent advances in offline Reinforcement Learning (RL) have proven that effective policy learning can benefit from imposing conservative constraints on pre-collected datasets. However, such static datasets often exhibit distribution bias, resulting in limited generalizability. To address this limitation, a straightforward solution is data augmentation (DA), which leverages generative models to enrich data distribution. Despite the promising results, current DA techniques focus solely on reconstructing future trajectories from given states, while ignoring the exploration of history transitions that reach them. This single-direction paradigm inevitably hinders the discovery of diverse behavior patterns, especially those leading to critical states that may have yielded high-reward outcomes. In this work, we introduce Bidirectional Trajectory Diffusion (BiTrajDiff), a novel DA framework for offline RL that models both future and history trajectories from any intermediate states. Specifically, we decompose the trajectory generation task into two independent yet complementary diffusion processes: one generating forward trajectories to predict future dynamics, and the other generating backward trajectories to trace essential history transitions.BiTrajDiff can efficiently leverage critical states as anchors to expand into potentially valuable yet underexplored regions of the state space, thereby facilitating dataset diversity. Extensive experiments on the D4RL benchmark suite demonstrate that BiTrajDiff achieves superior performance compared to other advanced DA methods across various offline RL backbones.

Manifold Trajectories in Next-Token Prediction: From Replicator Dynamics to Softmax Equilibrium 2025-08-28
Show

Decoding in large language models is often described as scoring tokens and normalizing with softmax. We give a minimal, self-contained account of this step as a constrained variational principle on the probability simplex. The discrete, normalization-respecting ascent is the classical multiplicative-weights (entropic mirror) update; its continuous-time limit is the replicator flow. From these ingredients we prove that, for a fixed context and temperature, the next-token distribution follows a smooth trajectory inside the simplex and converges to the softmax equilibrium. This formalizes the common ``manifold traversal'' intuition at the output-distribution level. The analysis yields precise, practice-facing consequences: temperature acts as an exact rescaling of time along the same trajectory, while top-k and nucleus sampling restrict the flow to a face with identical guarantees. We also outline a controlled account of path-dependent score adjustments and their connection to loop-like, hallucination-style behavior. We make no claims about training dynamics or internal representations; those are deferred to future work.

LeMat-Traj: A Scalable and Unified Dataset of Materials Trajectories for Atomistic Modeling 2025-08-28
Show

The development of accurate machine learning interatomic potentials (MLIPs) is limited by the fragmented availability and inconsistent formatting of quantum mechanical trajectory datasets derived from Density Functional Theory (DFT). These datasets are expensive to generate yet difficult to combine due to variations in format, metadata, and accessibility. To address this, we introduce LeMat-Traj, a curated dataset comprising over 120 million atomic configurations aggregated from large-scale repositories, including the Materials Project, Alexandria, and OQMD. LeMat-Traj standardizes data representation, harmonizes results and filters for high-quality configurations across widely used DFT functionals (PBE, PBESol, SCAN, r2SCAN). It significantly lowers the barrier for training transferrable and accurate MLIPs. LeMat-Traj spans both relaxed low-energy states and high-energy, high-force structures, complementing molecular dynamics and active learning datasets. By fine-tuning models pre-trained on high-force data with LeMat-Traj, we achieve a significant reduction in force prediction errors on relaxation tasks. We also present LeMaterial-Fetcher, a modular and extensible open-source library developed for this work, designed to provide a reproducible framework for the community to easily incorporate new data sources and ensure the continued evolution of large-scale materials datasets. LeMat-Traj and LeMaterial-Fetcher are publicly available at https://huggingface.co/datasets/LeMaterial/LeMat-Traj and https://github.com/LeMaterial/lematerial-fetcher.

Uncertainty-Aware Trajectory Prediction via Rule-Regularized Heteroscedastic Deep Classification 2025-08-28
Show

Deep learning-based trajectory prediction models have demonstrated promising capabilities in capturing complex interactions. However, their out-of-distribution generalization remains a significant challenge, particularly due to unbalanced data and a lack of enough data and diversity to ensure robustness and calibration. To address this, we propose SHIFT (Spectral Heteroscedastic Informed Forecasting for Trajectories), a novel framework that uniquely combines well-calibrated uncertainty modeling with informative priors derived through automated rule extraction. SHIFT reformulates trajectory prediction as a classification task and employs heteroscedastic spectral-normalized Gaussian processes to effectively disentangle epistemic and aleatoric uncertainties. We learn informative priors from training labels, which are automatically generated from natural language driving rules, such as stop rules and drivability constraints, using a retrieval-augmented generation framework powered by a large language model. Extensive evaluations over the nuScenes dataset, including challenging low-data and cross-location scenarios, demonstrate that SHIFT outperforms state-of-the-art methods, achieving substantial gains in uncertainty calibration and displacement metrics. In particular, our model excels in complex scenarios, such as intersections, where uncertainty is inherently higher. Project page: https://kumarmanas.github.io/SHIFT/.

17 Pa...

17 Pages, 9 figures. Accepted to Robotics: Science and Systems(RSS), 2025

Extreme Learning Machine for the Characterization of Anomalous Diffusion from Single Trajectories (AnDi-ELM) 2025-08-28
Show

The study of the dynamics of natural and artificial systems has provided several examples of deviations from Brownian behavior, generally defined as anomalous diffusion. The investigation of these dynamics can provide a better understanding of diffusing objects and their surrounding media, but a quantitative characterization from individual trajectories is often challenging. Efforts devoted to improving anomalous diffusion detection using classical statistics and machine learning have produced several new methods. Recently, the anomalous diffusion challenge (AnDi, www.andi-challenge.org) was launched to objectively assess these approaches on a common dataset, focusing on three aspects of anomalous diffusion: the inference of the anomalous diffusion exponent; the classification of the diffusion model; and the segmentation of trajectories. In this article, I describe a simple approach to tackle the tasks of the AnDi challenge by combining extreme learning machine and feature engineering (AnDi-ELM). The method reaches satisfactory performance while offering a straightforward implementation and fast training time with limited computing resources, making it a suitable tool for fast preliminary screening of anomalous diffusion.

18 pa...

18 pages, 7 figures. Author's Accepted Manuscript of a published article in J. Phys. A: Math. Theor. 54: 334002 (2021). https://doi.org/10.1088/1751-8121/ac13dd

Ego-centric Predictive Model Conditioned on Hand Trajectories 2025-08-28
Show

In egocentric scenarios, anticipating both the next action and its visual outcome is essential for understanding human-object interactions and for enabling robotic planning. However, existing paradigms fall short of jointly modeling these aspects. Vision-Language-Action (VLA) models focus on action prediction but lack explicit modeling of how actions influence the visual scene, while video prediction models generate future frames without conditioning on specific actions, often resulting in implausible or contextually inconsistent outcomes. To bridge this gap, we propose a unified two-stage predictive framework that jointly models action and visual future in egocentric scenarios, conditioned on hand trajectories. In the first stage, we perform consecutive state modeling to process heterogeneous inputs (visual observations, language, and action history) and explicitly predict future hand trajectories. In the second stage, we introduce causal cross-attention to fuse multi-modal cues, leveraging inferred action signals to guide an image-based Latent Diffusion Model (LDM) for frame-by-frame future video generation. Our approach is the first unified model designed to handle both egocentric human activity understanding and robotic manipulation tasks, providing explicit predictions of both upcoming actions and their visual consequences. Extensive experiments on Ego4D, BridgeData, and RLBench demonstrate that our method outperforms state-of-the-art baselines in both action prediction and future video synthesis.

Code:...

Code: github.com/showlab/Ego-PM

UAV-UGV Cooperative Trajectory Optimization and Task Allocation for Medical Rescue Tasks in Post-Disaster Environments 2025-08-28
Show

In post-disaster scenarios, rapid and efficient delivery of medical resources is critical and challenging due to severe damage to infrastructure. To provide an optimized solution, we propose a cooperative trajectory optimization and task allocation framework leveraging unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs). This study integrates a Genetic Algorithm (GA) for efficient task allocation among multiple UAVs and UGVs, and employs an informed-RRT* (Rapidly-exploring Random Tree Star) algorithm for collision-free trajectory generation. Further optimization of task sequencing and path efficiency is conducted using Covariance Matrix Adaptation Evolution Strategy (CMA-ES). Simulation experiments conducted in a realistic post-disaster environment demonstrate that our proposed approach significantly improves the overall efficiency of medical rescue operations compared to traditional strategies. Specifically, our method reduces the total mission completion time to 26.7 minutes for a 15-task scenario, outperforming K-Means clustering and random allocation by over 73%. Furthermore, the framework achieves a substantial 15.1% reduction in total traveled distance after CMA-ES optimization. The cooperative utilization of UAVs and UGVs effectively balances their complementary advantages, highlighting the system's scalability and practicality for real-world deployment.

Enhanced Trust Region Sequential Convex Optimization for Multi-Drone Thermal Screening Trajectory Planning in Urban Environments 2025-08-28
Show

The rapid detection of abnormal body temperatures in urban populations is essential for managing public health risks, especially during outbreaks of infectious diseases. Multi-drone thermal screening systems offer promising solutions for fast, large-scale, and non-intrusive human temperature monitoring. However, trajectory planning for multiple drones in complex urban environments poses significant challenges, including collision avoidance, coverage efficiency, and constrained flight environments. In this study, we propose an enhanced trust region sequential convex optimization (TR-SCO) algorithm for optimal trajectory planning of multiple drones performing thermal screening tasks. Our improved algorithm integrates a refined convex optimization formulation within a trust region framework, effectively balancing trajectory smoothness, obstacle avoidance, altitude constraints, and maximum screening coverage. Simulation results demonstrate that our approach significantly improves trajectory optimality and computational efficiency compared to conventional convex optimization methods. This research provides critical insights and practical contributions toward deploying efficient multi-drone systems for real-time thermal screening in urban areas. For reader who are interested in our research, we release our source code at https://github.com/Cherry0302/Enhanced-TR-SCO.

Coresets from Trajectories: Selecting Data via Correlation of Loss Differences 2025-08-27
Show

Deep learning models achieve state-of-the-art performance across domains but face scalability challenges in real-time or resource-constrained scenarios. To address this, we propose Correlation of Loss Differences (CLD), a simple and scalable metric for coreset selection that identifies the most impactful training samples by measuring their alignment with the loss trajectories of a held-out validation set. CLD is highly efficient, requiring only per-sample loss values computed at training checkpoints, and avoiding the costly gradient and curvature computations used in many existing subset selection methods. We develop a general theoretical framework that establishes convergence guarantees for CLD-based coresets, demonstrating that the convergence error is upper-bounded by the alignment of the selected samples and the representativeness of the validation set. On CIFAR-100 and ImageNet-1k, CLD-based coresets typically outperform or closely match state-of-the-art methods across subset sizes, and remain within 1% of more computationally expensive baselines even when not leading. CLD transfers effectively across architectures (ResNet, VGG, DenseNet), enabling proxy-to-target selection with <1% degradation. Moreover, CLD is stable when using only early checkpoints, incurring negligible accuracy loss. Finally, CLD exhibits inherent bias reduction via per-class validation alignment, obviating the need for additional stratified sampling. Together, these properties make CLD a principled, efficient, stable, and transferable tool for scalable dataset optimization.

Belief-Conditioned One-Step Diffusion: Real-Time Trajectory Planning with Just-Enough Sensing 2025-08-27
Show

Robots equipped with rich sensor suites can localize reliably in partially-observable environments, but powering every sensor continuously is wasteful and often infeasible. Belief-space planners address this by propagating pose-belief covariance through analytic models and switching sensors heuristically--a brittle, runtime-expensive approach. Data-driven approaches--including diffusion models--learn multi-modal trajectories from demonstrations, but presuppose an accurate, always-on state estimate. We address the largely open problem: for a given task in a mapped environment, which \textit{minimal sensor subset} must be active at each location to maintain state uncertainty \textit{just low enough} to complete the task? Our key insight is that when a diffusion planner is explicitly conditioned on a pose-belief raster and a sensor mask, the spread of its denoising trajectories yields a calibrated, differentiable proxy for the expected localisation error. Building on this insight, we present Belief-Conditioned One-Step Diffusion (B-COD), the first planner that, in a 10 ms forward pass, returns a short-horizon trajectory, per-waypoint aleatoric variances, and a proxy for localisation error--eliminating external covariance rollouts. We show that this single proxy suffices for a soft-actor-critic to choose sensors online, optimising energy while bounding pose-covariance growth. We deploy B-COD in real-time marine trials on an unmanned surface vehicle and show that it reduces sensing energy consumption while matching the goal-reach performance of an always-on baseline.

Accep...

Accepted to CoRL 2025 (Conference on Robot Learning)

TrajFusionNet: Pedestrian Crossing Intention Prediction via Fusion of Sequential and Visual Trajectory Representations 2025-08-27
Show

With the introduction of vehicles with autonomous capabilities on public roads, predicting pedestrian crossing intention has emerged as an active area of research. The task of predicting pedestrian crossing intention involves determining whether pedestrians in the scene are likely to cross the road or not. In this work, we propose TrajFusionNet, a novel transformer-based model that combines future pedestrian trajectory and vehicle speed predictions as priors for predicting crossing intention. TrajFusionNet comprises two branches: a Sequence Attention Module (SAM) and a Visual Attention Module (VAM). The SAM branch learns from a sequential representation of the observed and predicted pedestrian trajectory and vehicle speed. Complementarily, the VAM branch enables learning from a visual representation of the predicted pedestrian trajectory by overlaying predicted pedestrian bounding boxes onto scene images. By utilizing a small number of lightweight modalities, TrajFusionNet achieves the lowest total inference time (including model runtime and data preprocessing) among current state-of-the-art approaches. In terms of performance, it achieves state-of-the-art results across the three most commonly used datasets for pedestrian crossing intention prediction.

This ...

This work has been submitted to IEEE Transactions on Intelligent Vehicles for possible publication

GTPO: Trajectory-Based Policy Optimization in Large Language Models 2025-08-27
Show

Policy-based optimizations are widely adopted today for the training and alignment of language models, where one of the most recent and effective approaches is Group-relative Policy Optimization (GRPO). In this paper, we reveals and analyze two major limitations of GRPO: (i) tokens frequently appear in completions with both positive and negative rewards, leading to conflicting gradient updates that can reduce their output probability, even though can be essential for maintaining proper structure; (ii) negatively rewarded completions may penalize confident responses and shift model decisions toward unlikely tokens, progressively flattening the output distribution and degrading learning. To address these issues and provide a more stable and effective policy optimization strategy, we introduce GTPO (Group-relative Trajectory-based Policy Optimization), which identifies conflict tokens, tokens appearing in the same position across completions with opposite rewards, protects them by skipping negative updates, while amplifying positive ones. To further prevent policy collapse, GTPO filters out completions whose entropy exceeds a provable threshold. Unlike GRPO, GTPO does not rely on KL-divergence regularization, eliminating the need for a reference model during training, while still ensuring greater training stability and improved performance, validated through multiple experiments on GSM8K, MATH and AIME 2024 benchmarks.

Trajectory-to-Action Pipeline (TAP): Automated Scenario Description Extraction for Autonomous Vehicle Behavior Comparison 2025-08-26
Show

Scenario Description Languages (SDLs) provide structured, interpretable embeddings that represent traffic scenarios encountered by autonomous vehicles (AVs), supporting key tasks such as scenario similarity searches and edge case detection for safety analysis. This paper introduces the Trajectory-to-Action Pipeline (TAP), a scalable and automated method for extracting SDL labels from large trajectory datasets. TAP applies a rules-based cross-entropy optimization approach to learn parameters directly from data, enhancing generalization across diverse driving contexts. Using the Waymo Open Motion Dataset (WOMD), TAP achieves 30% greater precision than Average Displacement Error (ADE) and 24% over Dynamic Time Warping (DTW) in identifying behaviorally similar trajectories. Additionally, TAP enables automated detection of unique driving behaviors, streamlining safety evaluation processes for AV testing. This work provides a foundation for scalable scenario-based AV behavior analysis, with potential extensions for integrating multi-agent contexts.

11 pages, 6 figures
"Where does it hurt?" -- Dataset and Study on Physician Intent Trajectories in Doctor Patient Dialogues 2025-08-26
Show

In a doctor-patient dialogue, the primary objective of physicians is to diagnose patients and propose a treatment plan. Medical doctors guide these conversations through targeted questioning to efficiently gather the information required to provide the best possible outcomes for patients. To the best of our knowledge, this is the first work that studies physician intent trajectories in doctor-patient dialogues. We use the Ambient Clinical Intelligence Benchmark' (Aci-bench) dataset for our study. We collaborate with medical professionals to develop a fine-grained taxonomy of physician intents based on the SOAP framework (Subjective, Objective, Assessment, and Plan). We then conduct a large-scale annotation effort to label over 5000 doctor-patient turns with the help of a large number of medical experts recruited using Prolific, a popular crowd-sourcing platform. This large labeled dataset is an important resource contribution that we use for benchmarking the state-of-the-art generative and encoder models for medical intent classification tasks. Our findings show that our models understand the general structure of medical dialogues with high accuracy, but often fail to identify transitions between SOAP categories. We also report for the first time common trajectories in medical dialogue structures that provide valuable insights for designing differential diagnosis' systems. Finally, we extensively study the impact of intent filtering for medical dialogue summarization and observe a significant boost in performance. We make the codes and data, including annotation guidelines, publicly available at https://github.com/DATEXIS/medical-intent-classification.

Accep...

Accepted at ECAI 2025

Preliminary Study on Space Utilization and Emergent Behaviors of Group vs. Single Pedestrians in Real-World Trajectories 2025-08-26
Show

This study presents an initial framework for distinguishing group and single pedestrians based on real-world trajectory data, with the aim of analyzing their differences in space utilization and emergent behavioral patterns. By segmenting pedestrian trajectories into fixed time bins and applying a Transformer-based pair classification model, we identify cohesive groups and isolate single pedestrians over a structured sequence-based filtering process. To prepare for deeper analysis, we establish a comprehensive metric framework incorporating both spatial and behavioral dimensions. Spatial utilization metrics include convex hull area, smallest enclosing circle radius, and heatmap-based spatial densities to characterize how different pedestrian types occupy and interact with space. Behavioral metrics such as velocity change, motion angle deviation, clearance radius, and trajectory straightness are designed to capture local adaptations and responses during interactions. Furthermore, we introduce a typology of encounter types-single-to-single, single-to-group, and group-to-group to categorize and later quantify different interaction scenarios. Although this version focuses primarily on the classification pipeline and dataset structuring, it establishes the groundwork for scalable analysis across different sequence lengths 60, 100, and 200 frames. Future versions will incorporate complete quantitative analysis of the proposed metrics and their implications for pedestrian simulation and space design validation in crowd dynamics research.

Trajectory Optimization for UAV-Based Medical Delivery with Temporal Logic Constraints and Convex Feasible Set Collision Avoidance 2025-08-26
Show

This paper addresses the problem of trajectory optimization for unmanned aerial vehicles (UAVs) performing time-sensitive medical deliveries in urban environments. Specifically, we consider a single UAV with 3 degree-of-freedom dynamics tasked with delivering blood packages to multiple hospitals, each with a predefined time window and priority. Mission objectives are encoded using Signal Temporal Logic (STL), enabling the formal specification of spatial-temporal constraints. To ensure safety, city buildings are modeled as 3D convex obstacles, and obstacle avoidance is handled through a Convex Feasible Set (CFS) method. The entire planning problem-combining UAV dynamics, STL satisfaction, and collision avoidance-is formulated as a convex optimization problem that ensures tractability and can be solved efficiently using standard convex programming techniques. Simulation results demonstrate that the proposed method generates dynamically feasible, collision-free trajectories that satisfy temporal mission goals, providing a scalable and reliable approach for autonomous UAV-based medical logistics.

11 pages, 4 figures
Dynamic Trajectory Optimization and Power Control for Hierarchical UAV Swarms in 6G Aerial Access Network 2025-08-26
Show

Unmanned aerial vehicles (UAVs) can serve as aerial base stations (BSs) to extend the ubiquitous connectivity for ground users (GUs) in the sixth-generation (6G) era. However, it is challenging to cooperatively deploy multiple UAV swarms in large-scale remote areas. Hence, in this paper, we propose a hierarchical UAV swarms structure for 6G aerial access networks, where the head UAVs serve as aerial BSs, and tail UAVs (T-UAVs) are responsible for relay. In detail, we jointly optimize the dynamic deployment and trajectory of UAV swarms, which is formulated as a multi-objective optimization problem (MOP) to concurrently minimize the energy consumption of UAV swarms and GUs, as well as the delay of GUs. However, the proposed MOP is a mixed integer nonlinear programming and NP-hard to solve. Therefore, we develop a K-means and Voronoi diagram based area division method, and construct Fermat points to establish connections between GUs and T-UAVs. Then, an improved non-dominated sorting whale optimization algorithm is proposed to seek Pareto optimal solutions for the transformed MOP. Finally, extensive simulations are conducted to verify the performance of proposed algorithms by comparing with baseline mechanisms, resulting in a 50% complexity reduction.

A Third-Order Gaussian Process Trajectory Representation Framework with Closed-Form Kinematics for Continuous-Time Motion Estimation 2025-08-26
Show

In this paper, we propose a third-order, i.e., white-noise-on-jerk, Gaussian Process (GP) Trajectory Representation (TR) framework for continuous-time (CT) motion estimation (ME) tasks. Our framework features a unified trajectory representation that encapsulates the kinematic models of both $SO(3)\times\mathbb{R}^3$ and $SE(3)$ pose representations. This encapsulation strategy allows users to use the same implementation of measurement-based factors for either choice of pose representation, which facilitates experimentation and comparison to achieve the best model for the ME task. In addition, unique to our framework, we derive the kinematic models with the closed-form temporal derivatives of the local variable of $SO(3)$ and $SE(3)$, which so far has only been approximated based on the Taylor expansion in the literature. Our experiments show that these kinematic models can improve the estimation accuracy in high-speed scenarios. All analytical Jacobians of the interpolated states with respect to the support states of the trajectory representation, as well as the motion prior factors, are also provided for accelerated Gauss-Newton (GN) optimization. Our experiments demonstrate the efficacy and efficiency of the framework in various motion estimation tasks such as localization, calibration, and odometry, facilitating fast prototyping for ME researchers. We release the source code for the benefit of the community. Our project is available at https://github.com/brytsknguyen/gptr.

The p...

The paper is currently under review at IEEE Transactions on Robotics (T-RO). The source code has been released, and feedback is welcome

SafeBimanual: Diffusion-based Trajectory Optimization for Safe Bimanual Manipulation 2025-08-25
Show

Bimanual manipulation has been widely applied in household services and manufacturing, which enables the complex task completion with coordination requirements. Recent diffusion-based policy learning approaches have achieved promising performance in modeling action distributions for bimanual manipulation. However, they ignored the physical safety constraints of bimanual manipulation, which leads to the dangerous behaviors with damage to robots and objects. To this end, we propose a test-time trajectory optimization framework named SafeBimanual for any pre-trained diffusion-based bimanual manipulation policies, which imposes the safety constraints on bimanual actions to avoid dangerous robot behaviors with improved success rate. Specifically, we design diverse cost functions for safety constraints in different dual-arm cooperation patterns including avoidance of tearing objects and collision between arms and objects, which optimizes the manipulator trajectories with guided sampling of diffusion denoising process. Moreover, we employ a vision-language model (VLM) to schedule the cost functions by specifying keypoints and corresponding pairwise relationship, so that the optimal safety constraint is dynamically generated in the entire bimanual manipulation process. SafeBimanual demonstrates superiority on 8 simulated tasks in RoboTwin with a 13.7% increase in success rate and a 18.8% reduction in unsafe interactions over state-of-the-art diffusion-based methods. Extensive experiments on 4 real-world tasks further verify its practical value by improving the success rate by 32.5%.

Proje...

Project website is at: https://denghaoyuan123.github.io/SafeBimanip/

Adaptive Output Steps: FlexiSteps Network for Dynamic Trajectory Prediction 2025-08-25
Show

Accurate trajectory prediction is vital for autonomous driving, robotics, and intelligent decision-making systems, yet traditional models typically rely on fixed-length output predictions, limiting their adaptability to dynamic real-world scenarios. In this paper, we introduce the FlexiSteps Network (FSN), a novel framework that dynamically adjusts prediction output time steps based on varying contextual conditions. Inspired by recent advancements addressing observation length discrepancies and dynamic feature extraction, FSN incorporates an pre-trained Adaptive Prediction Module (APM) to evaluate and adjust the output steps dynamically, ensuring optimal prediction accuracy and efficiency. To guarantee the plug-and-play of our FSN, we also design a Dynamic Decoder(DD). Additionally, to balance the prediction time steps and prediction accuracy, we design a scoring mechanism, which not only introduces the Fr'echet distance to evaluate the geometric similarity between the predicted trajectories and the ground truth trajectories but the length of predicted steps is also considered. Extensive experiments conducted on benchmark datasets including Argoverse and INTERACTION demonstrate the effectiveness and flexibility of our proposed FSN framework.

OmniCache: A Trajectory-Oriented Global Perspective on Training-Free Cache Reuse for Diffusion Transformer Models 2025-08-25
Show

Diffusion models have emerged as a powerful paradigm for generative tasks such as image synthesis and video generation, with Transformer architectures further enhancing performance. However, the high computational cost of diffusion Transformers-stemming from a large number of sampling steps and complex per-step computations-presents significant challenges for real-time deployment. In this paper, we introduce OmniCache, a training-free acceleration method that exploits the global redundancy inherent in the denoising process. Unlike existing methods that determine caching strategies based on inter-step similarities and tend to prioritize reusing later sampling steps, our approach originates from the sampling perspective of DIT models. We systematically analyze the model's sampling trajectories and strategically distribute cache reuse across the entire sampling process. This global perspective enables more effective utilization of cached computations throughout the diffusion trajectory, rather than concentrating reuse within limited segments of the sampling procedure. In addition, during cache reuse, we dynamically estimate the corresponding noise and filter it out to reduce its impact on the sampling direction. Extensive experiments demonstrate that our approach accelerates the sampling process while maintaining competitive generative quality, offering a promising and practical solution for efficient deployment of diffusion-based generative models.

Accep...

Accepted by ICCV 2025

Preference Trajectory Modeling via Flow Matching for Sequential Recommendation 2025-08-25
Show

Sequential recommendation predicts each user's next item based on their historical interaction sequence. Recently, diffusion models have attracted significant attention in this area due to their strong ability to model user interest distributions. They typically generate target items by denoising Gaussian noise conditioned on historical interactions. However, these models face two critical limitations. First, they exhibit high sensitivity to the condition, making it difficult to recover target items from pure Gaussian noise. Second, the inference process is computationally expensive, limiting practical deployment. To address these issues, we propose FlowRec, a simple yet effective sequential recommendation framework which leverages flow matching to explicitly model user preference trajectories from current states to future interests. Flow matching is an emerging generative paradigm, which offers greater flexibility in initial distributions and enables more efficient sampling. Based on this, we construct a personalized behavior-based prior distribution to replace Gaussian noise and learn a vector field to model user preference trajectories. To better align flow matching with the recommendation objective, we further design a single-step alignment loss incorporating both positive and negative samples, improving sampling efficiency and generation quality. Extensive experiments on four benchmark datasets verify the superiority of FlowRec over the state-of-the-art baselines.

SE-Agent: Self-Evolution Trajectory Optimization in Multi-Step Reasoning with LLM-Based Agents 2025-08-24
Show

Large Language Model (LLM)-based agents have recently shown impressive capabilities in complex reasoning and tool use via multi-step interactions with their environments. While these agents have the potential to tackle complicated tasks, their problem-solving process, i.e., agents' interaction trajectory leading to task completion, remains underexploited. These trajectories contain rich feedback that can navigate agents toward the right directions for solving problems correctly. Although prevailing approaches, such as Monte Carlo Tree Search (MCTS), can effectively balance exploration and exploitation, they ignore the interdependence among various trajectories and lack the diversity of search spaces, which leads to redundant reasoning and suboptimal outcomes. To address these challenges, we propose SE-Agent, a Self-Evolution framework that enables Agents to optimize their reasoning processes iteratively. Our approach revisits and enhances former pilot trajectories through three key operations: revision, recombination, and refinement. This evolutionary mechanism enables two critical advantages: (1) it expands the search space beyond local optima by intelligently exploring diverse solution paths guided by previous trajectories, and (2) it leverages cross-trajectory inspiration to efficiently enhance performance while mitigating the impact of suboptimal reasoning paths. Through these mechanisms, SE-Agent achieves continuous self-evolution that incrementally improves reasoning quality. We evaluate SE-Agent on SWE-bench Verified to resolve real-world GitHub issues. Experimental results across five strong LLMs show that integrating SE-Agent delivers up to 55% relative improvement, achieving state-of-the-art performance among all open-source agents on SWE-bench Verified. Our code and demonstration materials are publicly available at https://github.com/JARVIS-Xs/SE-Agent.

ReviBranch: Deep Reinforcement Learning for Branch-and-Bound with Revived Trajectories 2025-08-24
Show

The Branch-and-bound (B&B) algorithm is the main solver for Mixed Integer Linear Programs (MILPs), where the selection of branching variable is essential to computational efficiency. However, traditional heuristics for branching often fail to generalize across heterogeneous problem instances, while existing learning-based methods such as imitation learning (IL) suffers from dependence on expert demonstration quality, and reinforcement learning (RL) struggles with limitations in sparse rewards and dynamic state representation challenges. To address these issues, we propose ReviBranch, a novel deep RL framework that constructs revived trajectories by reviving explicit historical correspondences between branching decisions and their corresponding graph states along search-tree paths. During training, ReviBranch enables agents to learn from complete structural evolution and temporal dependencies within the branching process. Additionally, we introduce an importance-weighted reward redistribution mechanism that transforms sparse terminal rewards into dense stepwise feedback, addressing the sparse reward challenge. Extensive experiments on different MILP benchmarks demonstrate that ReviBranch outperforms state-of-the-art RL methods, reducing B&B nodes by 4.0% and LP iterations by 2.2% on large-scale instances. The results highlight the robustness and generalizability of ReviBranch across heterogeneous MILP problem classes.

conference
OVITA: Open-Vocabulary Interpretable Trajectory Adaptations 2025-08-24
Show

Adapting trajectories to dynamic situations and user preferences is crucial for robot operation in unstructured environments with non-expert users. Natural language enables users to express these adjustments in an interactive manner. We introduce OVITA, an interpretable, open-vocabulary, language-driven framework designed for adapting robot trajectories in dynamic and novel situations based on human instructions. OVITA leverages multiple pre-trained Large Language Models (LLMs) to integrate user commands into trajectories generated by motion planners or those learned through demonstrations. OVITA employs code as an adaptation policy generated by an LLM, enabling users to adjust individual waypoints, thus providing flexible control. Another LLM, which acts as a code explainer, removes the need for expert users, enabling intuitive interactions. The efficacy and significance of the proposed OVITA framework is demonstrated through extensive simulations and real-world environments with diverse tasks involving spatiotemporal variations on heterogeneous robotic platforms such as a KUKA IIWA robot manipulator, Clearpath Jackal ground robot, and CrazyFlie drone.

Accep...

Accepted to Robotics and Automation Letters 2025. Code link: https://github.com/anurag1000101/OVITA

ExtraGS: Geometric-Aware Trajectory Extrapolation with Uncertainty-Guided Generative Priors 2025-08-23
Show

Synthesizing extrapolated views from recorded driving logs is critical for simulating driving scenes for autonomous driving vehicles, yet it remains a challenging task. Recent methods leverage generative priors as pseudo ground truth, but often lead to poor geometric consistency and over-smoothed renderings. To address these limitations, we propose ExtraGS, a holistic framework for trajectory extrapolation that integrates both geometric and generative priors. At the core of ExtraGS is a novel Road Surface Gaussian(RSG) representation based on a hybrid Gaussian-Signed Distance Function (SDF) design, and Far Field Gaussians (FFG) that use learnable scaling factors to efficiently handle distant objects. Furthermore, we develop a self-supervised uncertainty estimation framework based on spherical harmonics that enables selective integration of generative priors only where extrapolation artifacts occur. Extensive experiments on multiple datasets, diverse multi-camera setups, and various generative priors demonstrate that ExtraGS significantly enhances the realism and geometric consistency of extrapolated views, while preserving high fidelity along the original trajectory.

A Rapid Iterative Trajectory Planning Method for Automated Parking through Differential Flatness 2025-08-23
Show

As autonomous driving continues to advance, automated parking is becoming increasingly essential. However, significant challenges arise when implementing path velocity decomposition (PVD) trajectory planning for automated parking. The primary challenge is ensuring rapid and precise collision-free trajectory planning, which is often in conflict. The secondary challenge involves maintaining sufficient control feasibility of the planned trajectory, particularly at gear shifting points (GSP). This paper proposes a PVD-based rapid iterative trajectory planning (RITP) method to solve the above challenges. The proposed method effectively balances the necessity for time efficiency and precise collision avoidance through a novel collision avoidance framework. Moreover, it enhances the overall control feasibility of the planned trajectory by incorporating the vehicle kinematics model and including terminal smoothing constraints (TSC) at GSP during path planning. Specifically, the proposed method leverages differential flatness to ensure the planned path adheres to the vehicle kinematic model. Additionally, it utilizes TSC to maintain curvature continuity at GSP, thereby enhancing the control feasibility of the overall trajectory. The simulation results demonstrate superior time efficiency and tracking errors compared to model-integrated and other iteration-based trajectory planning methods. In the real-world experiment, the proposed method was implemented and validated on a ROS-based vehicle, demonstrating the applicability of the RITP method for real vehicles.

Publi...

Published in the journal Robotics and Autonomous Systems

Agentic AI Empowered Multi-UAV Trajectory Optimization in Low-Altitude Economy Networks 2025-08-22
Show

This paper proposes a novel Agentic Retrieval-augmented generation with Mamba-Attention Integrated Transformer (ARMAIT) framework for multi-Unmanned Aerial Vehicle (UAV) trajectory optimization. The framework is built upon Large Language Models (LLMs), incorporating Retrieval-Augmented Generation (RAG) empowered by Agentic AI and integrated with a UAV-specific knowledge base. Through the Agentic RAG, the LLM autonomously interprets high-level task requirements and identifies the key components necessary for trajectory optimization, including model inputs and outputs, network architecture, reward functions, and task constraints. To support efficient modeling across different system scales, we introduce the Mamba-Attention Integrated Transformer (MAIT), a hybrid neural architecture that combines the long-range dependency modeling capability of attention mechanisms with the efficient temporal dynamic representation of Mamba. Furthermore, a Trajectory-Group Relative Policy Optimization (T-GRPO) method is proposed to achieve unified policy gradient optimization in both discrete and continuous trajectory spaces for MAIT training. Extensive experimental results validate the feasibility and effectiveness of the proposed ARMAIT framework.

Integrated Take-off Management and Trajectory Optimization for Merging Control in Urban Air Mobility Corridors 2025-08-21
Show

Urban Air Mobility (UAM) has the potential to revolutionize daily transportation, offering rapid and efficient aerial mobility services. Take-off and merging phases are critical for air corridor operations, requiring the coordination of take-off aircraft and corridor traffic while ensuring safety and seamless transition. This paper proposes an integrated take-off management and trajectory optimization for merging control in UAM corridors. We first introduce a novel take-off airspace design. To our knowledge, this paper is one of the first to propose a structured design for take-off airspace. Based on the take-off airspace design, we devise a hierarchical coordinated take-off and merging management (HCTMM) strategy. To be specific, the take-off airspace design can simplify aircraft dynamics and thus reduce the dimensionality of the trajectory optimization problem whilst mitigating obstacle avoidance complexities. The HCTMM strategy strictly ensures safety and improves the efficiency of take-off and merging operations. At the tactical level, a scheduling algorithm coordinates aircraft take-off times and selects dynamic merging points to reduce conflicts and ensure smooth take-off and merging processes. At the operational level, a trajectory optimization strategy ensures that each aircraft reaches the dynamic merging point efficiently while satisfying safety constraints. Simulation results show that, compared to representative strategies with fixed or dynamic merging points, the HCTMM strategy significantly improves operational efficiency and reduces computational burden, while ensuring safety under various corridor traffic conditions. Further results confirm the scalability of the HCTMM strategy and the computational efficiency enabled by the proposed take-off airspace design.

31 pages
BrainPath: Generating Subject-Specific Brain Aging Trajectories 2025-08-21
Show

Quantifying and forecasting individual brain aging trajectories is critical for understanding neurodegenerative disease and the heterogeneity of aging, yet current approaches remain limited. Most models predict chronological age, an imperfect surrogate for biological aging, or generate synthetic MRIs that enhance data diversity but fail to capture subject-specific trajectories. Here, we present BrainPath, a 3D generative framework that learns longitudinal brain aging dynamics during training and, at inference, predicts anatomically faithful MRIs at arbitrary timepoints from a single baseline scan. BrainPath integrates an age calibration loss, a swap learning strategy, and an age perceptual loss to preserve subtle, biologically meaningful variations. Across held-out ADNI and an independent NACC dataset, BrainPath outperforms state-of-the-art reference models in structural similarity (SSIM), mean squared error (MSE), peak signal-to-noise ratio (PSNR), and MRI age-difference accuracy, while capturing realistic and temporally consistent aging patterns. Beyond methodological innovation, BrainPath enables personalized mapping of brain aging, synthetic follow-up scan prediction, and trajectory-based analyses, providing a foundation for precision modeling of brain aging and supporting research into neurodegeneration and aging interventions.

Active Disturbance Rejection Control for Trajectory Tracking of a Seagoing USV: Design, Simulation, and Field Experiments 2025-08-20
Show

Unmanned Surface Vessels (USVs) face significant control challenges due to uncertain environmental disturbances like waves and currents. This paper proposes a trajectory tracking controller based on Active Disturbance Rejection Control (ADRC) implemented on the DUS V2500. A custom simulation incorporating realistic waves and current disturbances is developed to validate the controller's performance, supported by further validation through field tests in the harbour of Scheveningen, the Netherlands, and at sea. Simulation results demonstrate that ADRC significantly reduces cross-track error across all tested conditions compared to a baseline PID controller but increases control effort and energy consumption. Field trials confirm these findings while revealing a further increase in energy consumption during sea trials compared to the baseline.

Accep...

Accepted for presentation at IROS 2025. Accepted version

TRUST-Planner: Topology-guided Robust Trajectory Planner for AAVs with Uncertain Obstacle Spatial-temporal Avoidance 2025-08-20
Show

Despite extensive developments in motion planning of autonomous aerial vehicles (AAVs), existing frameworks faces the challenges of local minima and deadlock in complex dynamic environments, leading to increased collision risks. To address these challenges, we present TRUST-Planner, a topology-guided hierarchical planning framework for robust spatial-temporal obstacle avoidance. In the frontend, a dynamic enhanced visible probabilistic roadmap (DEV-PRM) is proposed to rapidly explore topological paths for global guidance. The backend utilizes a uniform terminal-free minimum control polynomial (UTF-MINCO) and dynamic distance field (DDF) to enable efficient predictive obstacle avoidance and fast parallel computation. Furthermore, an incremental multi-branch trajectory management framework is introduced to enable spatio-temporal topological decision-making, while efficiently leveraging historical information to reduce replanning time. Simulation results show that TRUST-Planner outperforms baseline competitors, achieving a 96% success rate and millisecond-level computation efficiency in tested complex environments. Real-world experiments further validate the feasibility and practicality of the proposed method.

Great GATsBi: Hybrid, Multimodal, Trajectory Forecasting for Bicycles using Anticipation Mechanism 2025-08-20
Show

Accurate prediction of road user movement is increasingly required by many applications ranging from advanced driver assistance systems to autonomous driving, and especially crucial for road safety. Even though most traffic accident fatalities account to bicycles, they have received little attention, as previous work focused mainly on pedestrians and motorized vehicles. In this work, we present the Great GATsBi, a domain-knowledge-based, hybrid, multimodal trajectory prediction framework for bicycles. The model incorporates both physics-based modeling (inspired by motorized vehicles) and social-based modeling (inspired by pedestrian movements) to explicitly account for the dual nature of bicycle movement. The social interactions are modeled with a graph attention network, and include decayed historical, but also anticipated, future trajectory data of a bicycles neighborhood, following recent insights from psychological and social studies. The results indicate that the proposed ensemble of physics models -- performing well in the short-term predictions -- and social models -- performing well in the long-term predictions -- exceeds state-of-the-art performance. We also conducted a controlled mass-cycling experiment to demonstrate the framework's performance when forecasting bicycle trajectories and modeling social interactions with road users.

FlightPatchNet: Multi-Scale Patch Network with Differential Coding for Flight Trajectory Prediction 2025-08-20
Show

Accurate multi-step flight trajectory prediction plays an important role in Air Traffic Control, which can ensure the safety of air transportation. Two main issues limit the flight trajectory prediction performance of existing works. The first issue is the negative impact on prediction accuracy caused by the significant differences in data range. The second issue is that real-world flight trajectories involve underlying temporal dependencies, and most existing methods fail to reveal the hidden complex temporal variations and extract features from one single time scale. To address the above issues, we propose FlightPatchNet, a multi-scale patch network with differential coding for flight trajectory prediction. Specifically, FlightPatchNet first utilizes differential coding to encode the original values of longitude and latitude into first-order differences and generates embeddings for all variables at each time step. Then, global temporal attention is introduced to explore the dependencies between different time steps. To fully explore the diverse temporal patterns in flight trajectories, a multi-scale patch network is delicately designed to serve as the backbone. The multi-scale patch network exploits stacked patch mixer blocks to capture inter- and intra-patch dependencies under different time scales, and further integrates multi-scale temporal features across different scales and variables. Finally, FlightPatchNet ensembles multiple predictors to make direct multi-step prediction. Extensive experiments on ADS-B datasets demonstrate that our model outperforms the competitive baselines.

Accep...

Accepted by UAI 2025. Code is available at https://github.com/graceLan1994/FlightPatchNet

Reliability comparison of vessel trajectory prediction models via Probability of Detection 2025-08-19
Show

This contribution addresses vessel trajectory prediction (VTP), focusing on the evaluation of different deep learning-based approaches. The objective is to assess model performance in diverse traffic complexities and compare the reliability of the approaches. While previous VTP models overlook the specific traffic situation complexity and lack reliability assessments, this research uses a probability of detection analysis to quantify model reliability in varying traffic scenarios, thus going beyond common error distribution analyses. All models are evaluated on test samples categorized according to their traffic situation during the prediction horizon, with performance metrics and reliability estimates obtained for each category. The results of this comprehensive evaluation provide a deeper understanding of the strengths and weaknesses of the different prediction approaches, along with their reliability in terms of the prediction horizon lengths for which safe forecasts can be guaranteed. These findings can inform the development of more reliable vessel trajectory prediction approaches, enhancing safety and efficiency in future inland waterways navigation.

2025 ...

2025 IEEE Intelligent Vehicles Symposium (IV)

Trajectory Tracking and Stabilization of Quadrotors Using Deep Koopman Model Predictive Control 2025-08-19
Show

This paper presents a data-driven control framework for quadrotor systems that integrates a deep Koopman operator with model predictive control (DK-MPC). The deep Koopman operator is trained on sampled flight data to construct a high-dimensional latent representation in which the nonlinear quadrotor dynamics are approximated by linear models. This linearization enables the application of MPC to efficiently optimize control actions over a finite prediction horizon, ensuring accurate trajectory tracking and stabilization. The proposed DK-MPC approach is validated through a series of trajectory-following and point-stabilization numerical experiments, where it demonstrates superior tracking accuracy and significantly lower computation time compared to conventional nonlinear MPC. These results highlight the potential of Koopman-based learning methods to handle complex quadrotor dynamics while meeting the real-time requirements of embedded flight control. Future work will focus on extending the framework to more agile flight scenarios and improving robustness against external disturbances.

Hybrid Machine Learning Model with a Constrained Action Space for Trajectory Prediction 2025-08-19
Show

Trajectory prediction is crucial to advance autonomous driving, improving safety, and efficiency. Although end-to-end models based on deep learning have great potential, they often do not consider vehicle dynamic limitations, leading to unrealistic predictions. To address this problem, this work introduces a novel hybrid model that combines deep learning with a kinematic motion model. It is able to predict object attributes such as acceleration and yaw rate and generate trajectories based on them. A key contribution is the incorporation of expert knowledge into the learning objective of the deep learning model. This results in the constraint of the available action space, thus enabling the prediction of physically feasible object attributes and trajectories, thereby increasing safety and robustness. The proposed hybrid model facilitates enhanced interpretability, thereby reinforcing the trustworthiness of deep learning methods and promoting the development of safe planning solutions. Experiments conducted on the publicly available real-world Argoverse dataset demonstrate realistic driving behaviour, with benchmark comparisons and ablation studies showing promising results.

Copyr...

Copyright 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

Rapid Urban Visibility Hotspots: Quantifying Building Vertex Visibility from Connected Vehicle Trajectories using Spatial Indexing 2025-08-19
Show

Effective placement of Out-of-Home advertising and street furniture requires accurate identification of locations offering maximum visual exposure to target audiences, particularly vehicular traffic. Traditional site selection methods often rely on static traffic counts or subjective assessments. This research introduces a data-driven methodology to objectively quantify location visibility by analyzing large-scale connected vehicle trajectory data (sourced from Compass IoT) within urban environments. We model the dynamic driver field-of-view using a forward-projected visibility area for each vehicle position derived from interpolated trajectories. By integrating this with building vertex locations extracted from OpenStreetMap, we quantify the cumulative visual exposure, or visibility count'', for thousands of potential points of interest near roadways. The analysis reveals that visibility is highly concentrated, identifying specific visual hotspots'' that receive disproportionately high exposure compared to average locations. The core technical contribution involves the construction of a BallTree spatial index over building vertices. This enables highly efficient (O(logN) complexity) radius queries to determine which vertices fall within the viewing circles of millions of trajectory points across numerous trips, significantly outperforming brute-force geometric checks. Analysis reveals two key findings: 1) Visibility is highly concentrated, identifying distinct 'visual hotspots' receiving disproportionately high exposure compared to average locations. 2) The aggregated visibility counts across vertices conform to a Log-Normal distribution.

Uncertainty Tube Visualization of Particle Trajectories 2025-08-19
Show

Predicting particle trajectories with neural networks (NNs) has substantially enhanced many scientific and engineering domains. However, effectively quantifying and visualizing the inherent uncertainty in predictions remains challenging. Without an understanding of the uncertainty, the reliability of NN models in applications where trustworthiness is paramount is significantly compromised. This paper introduces the uncertainty tube, a novel, computationally efficient visualization method designed to represent this uncertainty in NN-derived particle paths. Our key innovation is the design and implementation of a superelliptical tube that accurately captures and intuitively conveys nonsymmetric uncertainty. By integrating well-established uncertainty quantification techniques, such as Deep Ensembles, Monte Carlo Dropout (MC Dropout), and Stochastic Weight Averaging-Gaussian (SWAG), we demonstrate the practical utility of the uncertainty tube, showcasing its application on both synthetic and simulation datasets.

ROVER: Robust Loop Closure Verification with Trajectory Prior in Repetitive Environments 2025-08-19
Show

Loop closure detection is important for simultaneous localization and mapping (SLAM), which associates current observations with historical keyframes, achieving drift correction and global relocalization. However, a falsely detected loop can be fatal, and this is especially difficult in repetitive environments where appearance-based features fail due to the high similarity. Therefore, verification of a loop closure is a critical step in avoiding false positive detections. Existing works in loop closure verification predominantly focus on learning invariant appearance features, neglecting the prior knowledge of the robot's spatial-temporal motion cue, i.e., trajectory. In this letter, we propose ROVER, a loop closure verification method that leverages the historical trajectory as a prior constraint to reject false loops in challenging repetitive environments. For each loop candidate, it is first used to estimate the robot trajectory with pose-graph optimization. This trajectory is then submitted to a scoring scheme that assesses its compliance with the trajectory without the loop, which we refer to as the trajectory prior, to determine if the loop candidate should be accepted. Benchmark comparisons and real-world experiments demonstrate the effectiveness of the proposed method. Furthermore, we integrate ROVER into state-of-the-art SLAM systems to verify its robustness and efficiency. Our source code and self-collected dataset are available at https://github.com/jarvisyjw/ROVER.

8 pages, 9 figures
Adaptive Conformal Prediction Intervals Over Trajectory Ensembles 2025-08-18
Show

Future trajectories play an important role across domains such as autonomous driving, hurricane forecasting, and epidemic modeling, where practitioners commonly generate ensemble paths by sampling probabilistic models or leveraging multiple autoregressive predictors. While these trajectories reflect inherent uncertainty, they are typically uncalibrated. We propose a unified framework based on conformal prediction that transforms sampled trajectories into calibrated prediction intervals with theoretical coverage guarantees. By introducing a novel online update step and an optimization step that captures inter-step dependencies, our method can produce discontinuous prediction intervals around each trajectory, naturally capture temporal dependencies, and yield sharper, more adaptive uncertainty estimates.

STRAP: Robot Sub-Trajectory Retrieval for Augmented Policy Learning 2025-08-18
Show

Robot learning is witnessing a significant increase in the size, diversity, and complexity of pre-collected datasets, mirroring trends in domains such as natural language processing and computer vision. Many robot learning methods treat such datasets as multi-task expert data and learn a multi-task, generalist policy by training broadly across them. Notably, while these generalist policies can improve the average performance across many tasks, the performance of generalist policies on any one task is often suboptimal due to negative transfer between partitions of the data, compared to task-specific specialist policies. In this work, we argue for the paradigm of training policies during deployment given the scenarios they encounter: rather than deploying pre-trained policies to unseen problems in a zero-shot manner, we non-parametrically retrieve and train models directly on relevant data at test time. Furthermore, we show that many robotics tasks share considerable amounts of low-level behaviors and that retrieval at the "sub"-trajectory granularity enables significantly improved data utilization, generalization, and robustness in adapting policies to novel problems. In contrast, existing full-trajectory retrieval methods tend to underutilize the data and miss out on shared cross-task content. This work proposes STRAP, a technique for leveraging pre-trained vision foundation models and dynamic time warping to retrieve sub-sequences of trajectories from large training corpora in a robust fashion. STRAP outperforms both prior retrieval algorithms and multi-task learning methods in simulated and real experiments, showing the ability to scale to much larger offline datasets in the real world as well as the ability to learn robust control policies with just a handful of real-world demonstrations.

Proje...

Project website at https://weirdlabuw.github.io/strap/

Latent Plan Transformer for Trajectory Abstraction: Planning as Latent Space Inference 2025-08-18
Show

In tasks aiming for long-term returns, planning becomes essential. We study generative modeling for planning with datasets repurposed from offline reinforcement learning. Specifically, we identify temporal consistency in the absence of step-wise rewards as one key technical challenge. We introduce the Latent Plan Transformer (LPT), a novel model that leverages a latent variable to connect a Transformer-based trajectory generator and the final return. LPT can be learned with maximum likelihood estimation on trajectory-return pairs. In learning, posterior sampling of the latent variable naturally integrates sub-trajectories to form a consistent abstraction despite the finite context. At test time, the latent variable is inferred from an expected return before policy execution, realizing the idea of planning as inference. Our experiments demonstrate that LPT can discover improved decisions from sub-optimal trajectories, achieving competitive performance across several benchmarks, including Gym-Mujoco, Franka Kitchen, Maze2D, and Connect Four. It exhibits capabilities in nuanced credit assignments, trajectory stitching, and adaptation to environmental contingencies. These results validate that latent variable inference can be a strong alternative to step-wise reward prompting.

Autonomous Oil Spill Response Through Liquid Neural Trajectory Modeling and Coordinated Marine Robotics 2025-08-17
Show

Marine oil spills pose grave environmental and economic risks, threatening marine ecosystems, coastlines, and dependent industries. Predicting and managing oil spill trajectories is highly complex, due to the interplay of physical, chemical, and environmental factors such as wind, currents, and temperature, which makes timely and effective response challenging. Accurate real-time trajectory forecasting and coordinated mitigation are vital for minimizing the impact of these disasters. This study introduces an integrated framework combining a multi-agent swarm robotics system built on the MOOS-IvP platform with Liquid Time-Constant Neural Networks (LTCNs). The proposed system fuses adaptive machine learning with autonomous marine robotics, enabling real-time prediction, dynamic tracking, and rapid response to evolving oil spills. By leveraging LTCNs--well-suited for modeling complex, time-dependent processes--the framework achieves real-time, high-accuracy forecasts of spill movement. Swarm intelligence enables decentralized, scalable, and resilient decision-making among robot agents, enhancing collective monitoring and containment efforts. Our approach was validated using data from the Deepwater Horizon spill, where the LTC-RK4 model achieved 0.96 spatial accuracy, surpassing LSTM approaches by 23%. The integration of advanced neural modeling with autonomous, coordinated robotics demonstrates substantial improvements in prediction precision, flexibility, and operational scalability. Ultimately, this research advances the state-of-the-art for sustainable, autonomous oil spill management and environmental protection by enhancing both trajectory prediction and response coordination.

30 pa...

30 pages, 40 figures. Framework combining Liquid Time-Constant Neural Networks with autonomous marine robotics for oil spill trajectory prediction and response coordination

FSDP: Fast and Safe Data-Driven Overtaking Trajectory Planning for Head-to-Head Autonomous Racing Competitions 2025-08-16
Show

Generating overtaking trajectories in autonomous racing is a challenging task, as the trajectory must satisfy the vehicle's dynamics and ensure safety and real-time performance running on resource-constrained hardware. This work proposes the Fast and Safe Data-Driven Planner to address this challenge. Sparse Gaussian predictions are introduced to improve both the computational efficiency and accuracy of opponent predictions. Furthermore, the proposed approach employs a bi-level quadratic programming framework to generate an overtaking trajectory leveraging the opponent predictions. The first level uses polynomial fitting to generate a rough trajectory, from which reference states and control inputs are derived for the second level. The second level formulates a model predictive control optimization problem in the Frenet frame, generating a trajectory that satisfies both kinematic feasibility and safety. Experimental results on the F1TENTH platform show that our method outperforms the State-of-the-Art, achieving an 8.93% higher overtaking success rate, allowing the maximum opponent speed, ensuring a smoother ego trajectory, and reducing 74.04% computational time compared to the Predictive Spliner method. The code is available at: https://github.com/ZJU-DDRX/FSDP.

accep...

accepted by IROS 2025

On Delta-Homology Analogy: Memory as Structured Trajectories 2025-08-15
Show

We introduce the \emph{delta-homology analogy}, which formalizes memory as a set of sparse, topologically irreducible attractors. A \emph{Dirac delta-like memory trace} ( \delta_\gamma ) is identified with a nontrivial homology generator ( [\gamma] \in H_1(\mathcal{Z}) ) on a latent manifold of cognitive states. Such traces are sharply localized along reproducible topological cycles and are only activated when inference trajectories complete a full cycle. They encode minimal, path-dependent memory units that cannot be synthesized from local features alone. Based on the analogy, we propose a topological framework for memory and inference grounded in the structure of spike-timing dynamics and persistent homology. Starting from the observation that polychronous neural groups (PNGs) encode reproducible, time-locked spike sequences shaped by axonal delays and synaptic plasticity, we construct \emph{spatiotemporal complexes} whose temporally consistent transitions define chain complexes over which robust activation cycles emerge. These activation loops are abstracted into \emph{cell posets}, enabling a compact and causally ordered representation of neural activity with overlapping and compositional memory traces.

Two-Impulse Trajectory Design in Two-Body Systems With Riemannian Geometry 2025-08-15
Show

This work presents a new method for generating impulsive trajectories in restricted two-body systems by leveraging Riemannian geometry. The proposed method transforms the standard trajectory optimization problem into a purely geometric one that involves computing a set of geodesics for a suitable Riemannian metric. This transformation is achieved by defining a metric, specifically the Jacobi metric, that embeds the dynamics directly into the metric, so any geodesic of the metric is also a dynamically feasible trajectory. The method finds the fuel-optimal transfer trajectory by sampling candidate energy ($\Delta V$) changes for different points on the current and desired orbit, and efficiently computing and evaluating each candidate geodesic, which are equivalent to candidate orbit transfer trajectories via the Jacobi metric. The method bypasses the known issues of optimization-based methods, e.g., sensitivity to the initial guess, and can be applied to more complex two-body systems. The approach is demonstrated on the minimum-$\Delta V$ two-impulse phase-free orbit transfer problem, first on a Keplerian system and second on a system with a modeled $J_2$ perturbation. The proposed method is shown to meet or exceed the state-of-the-art methods in the minimum-$\Delta V$ problem in the Keplerian system. The generality and versatility of the approach is demonstrated by seamlessly including the $J_2$ perturbation, a case that many existing methods cannot handle. Numerical simulations and performance comparisons showcase the effectiveness of the approach.

TrajSV: A Trajectory-based Model for Sports Video Representations and Applications 2025-08-15
Show

Sports analytics has received significant attention from both academia and industry in recent years. Despite the growing interest and efforts in this field, several issues remain unresolved, including (1) data unavailability, (2) lack of an effective trajectory-based framework, and (3) requirement for sufficient supervision labels. In this paper, we present TrajSV, a trajectory-based framework that addresses various issues in existing studies. TrajSV comprises three components: data preprocessing, Clip Representation Network (CRNet), and Video Representation Network (VRNet). The data preprocessing module extracts player and ball trajectories from sports broadcast videos. CRNet utilizes a trajectory-enhanced Transformer module to learn clip representations based on these trajectories. Additionally, VRNet learns video representations by aggregating clip representations and visual features with an encoder-decoder architecture. Finally, a triple contrastive loss is introduced to optimize both video and clip representations in an unsupervised manner. The experiments are conducted on three broadcast video datasets to verify the effectiveness of TrajSV for three types of sports (i.e., soccer, basketball, and volleyball) with three downstream applications (i.e., sports video retrieval, action spotting, and video captioning). The results demonstrate that TrajSV achieves state-of-the-art performance in sports video retrieval, showcasing a nearly 70% improvement. It outperforms baselines in action spotting, achieving state-of-the-art results in 9 out of 17 action categories, and demonstrates a nearly 20% improvement in video captioning. Additionally, we introduce a deployed system along with the three applications based on TrajSV.

This ...

This paper has been accepted by TCSVT

Relative Position Matters: Trajectory Prediction and Planning with Polar Representation 2025-08-15
Show

Trajectory prediction and planning in autonomous driving are highly challenging due to the complexity of predicting surrounding agents' movements and planning the ego agent's actions in dynamic environments. Existing methods encode map and agent positions and decode future trajectories in Cartesian coordinates. However, modeling the relationships between the ego vehicle and surrounding traffic elements in Cartesian space can be suboptimal, as it does not naturally capture the varying influence of different elements based on their relative distances and directions. To address this limitation, we adopt the Polar coordinate system, where positions are represented by radius and angle. This representation provides a more intuitive and effective way to model spatial changes and relative relationships, especially in terms of distance and directional influence. Based on this insight, we propose Polaris, a novel method that operates entirely in Polar coordinates, distinguishing itself from conventional Cartesian-based approaches. By leveraging the Polar representation, this method explicitly models distance and direction variations and captures relative relationships through dedicated encoding and refinement modules, enabling more structured and spatially aware trajectory prediction and planning. Extensive experiments on the challenging prediction (Argoverse 2) and planning benchmarks (nuPlan) demonstrate that Polaris achieves state-of-the-art performance.

KDPE: A Kernel Density Estimation Strategy for Diffusion Policy Trajectory Selection 2025-08-15
Show

Learning robot policies that capture multimodality in the training data has been a long-standing open challenge for behavior cloning. Recent approaches tackle the problem by modeling the conditional action distribution with generative models. One of these approaches is Diffusion Policy, which relies on a diffusion model to denoise random points into robot action trajectories. While achieving state-of-the-art performance, it has two main drawbacks that may lead the robot out of the data distribution during policy execution. First, the stochasticity of the denoising process can highly impact on the quality of generated trajectory of actions. Second, being a supervised learning approach, it can learn data outliers from the dataset used for training. Recent work focuses on mitigating these limitations by combining Diffusion Policy either with large-scale training or with classical behavior cloning algorithms. Instead, we propose KDPE, a Kernel Density Estimation-based strategy that filters out potentially harmful trajectories output of Diffusion Policy while keeping a low test-time computational overhead. For Kernel Density Estimation, we propose a manifold-aware kernel to model a probability density function for actions composed of end-effector Cartesian position, orientation, and gripper state. KDPE overall achieves better performance than Diffusion Policy on simulated single-arm tasks and real robot experiments. Additional material and code are available on our project page at https://hsp-iit.github.io/KDPE/.

9th C...

9th Conference on Robot Learning (CoRL 2025), Seoul, Korea

Direct data-driven interpolation and approximation of linear parameter-varying system trajectories 2025-08-15
Show

We consider the problem of estimating missing values in trajectories of linear parameter-varying (LPV) systems. We solve this interpolation problem for the class of shifted-affine LPV systems. Conditions for the existence and uniqueness of solutions are given and a direct data-driven algorithm for its computation is presented, i.e., the data-generating system is not given by a parametric model but is implicitly specified by data. We illustrate the applicability of the proposed solution on illustrative examples of a mass-spring-damper system with exogenous and endogenous parameter variation.

9 pag...

9 pages, 5 figures, submitted for review

SafeConstellations: Steering LLM Safety to Reduce Over-Refusals Through Task-Specific Trajectory 2025-08-15
Show

LLMs increasingly exhibit over-refusal behavior, where safety mechanisms cause models to reject benign instructions that superficially resemble harmful content. This phenomena diminishes utility in production applications that repeatedly rely on common prompt templates or applications that frequently rely on LLMs for specific tasks (e.g. sentiment analysis, language translation). Through comprehensive evaluation, we demonstrate that LLMs still tend to refuse responses to harmful instructions when those instructions are reframed to appear as benign tasks. Our mechanistic analysis reveal that LLMs follow distinct "constellation" patterns in embedding space as representations traverse layers, with each task maintaining consistent trajectories that shift predictably between refusal and non-refusal cases. We introduce SafeConstellations, an inference-time trajectory-shifting approach that tracks task-specific trajectory patterns and guides representations toward non-refusal pathways. By selectively guiding model behavior only on tasks prone to over-refusal, and by preserving general model behavior, our method reduces over-refusal rates by up to 73% with minimal impact on utility-offering a principled approach to mitigating over-refusals.

Preprint
MARS-FTCP: Robust Fault-Tolerant Control and Agile Trajectory Planning for Modular Aerial Robot Systems 2025-08-15
Show

Modular Aerial Robot Systems (MARS) consist of multiple drone units that can self-reconfigure to adapt to various mission requirements and fault conditions. However, existing fault-tolerant control methods exhibit significant oscillations during docking and separation, impacting system stability. To address this issue, we propose a novel fault-tolerant control reallocation method that adapts to an arbitrary number of modular robots and their assembly formations. The algorithm redistributes the expected collective force and torque required for MARS to individual units according to their moment arm relative to the center of MARS mass. Furthermore, we propose an agile trajectory planning method for MARS of arbitrary configurations, which is collision-avoiding and dynamically feasible. Our work represents the first comprehensive approach to enable fault-tolerant and collision avoidance flight for MARS. We validate our method through extensive simulations, demonstrating improved fault tolerance, enhanced trajectory tracking accuracy, and greater robustness in cluttered environments. The videos and source code of this work are available at https://github.com/RuiHuangNUS/MARS-FTCP/

Enhancing Interactive Voting-Based Map Matching: Improving Efficiency and Robustness for Heterogeneous GPS Trajectories 2025-08-15
Show

This paper presents an enhanced version of the Interactive Voting-Based Map Matching algorithm, designed to efficiently process trajectories with varying sampling rates. The main aim is to reconstruct GPS trajectories with high accuracy, independent of input data quality. Building upon the original algorithm, developed exclusively for aligning GPS signals to road networks, we extend its capabilities by integrating trajectory imputation. Our improvements also include the implementation of a distance-bounded interactive voting strategy to reduce computational complexity, as well as modifications to address missing data in the road network. Furthermore, we incorporate a custom-built asset derived from OpenStreetMap, enabling this approach to be smoothly applied in any geographic region covered by OpenStreetMap's road network. These advancements preserve the core strengths of the original algorithm while significantly extending its applicability to diverse real-world scenarios.

Reinforcement Learning meets Masked Video Modeling : Trajectory-Guided Adaptive Token Selection 2025-08-14
Show

Masked video modeling~(MVM) has emerged as a highly effective pre-training strategy for visual foundation models, whereby the model reconstructs masked spatiotemporal tokens using information from visible tokens. However, a key challenge in such approaches lies in selecting an appropriate masking strategy. Previous studies have explored predefined masking techniques, including random and tube-based masking, as well as approaches that leverage key motion priors, optical flow and semantic cues from externally pre-trained models. In this work, we introduce a novel and generalizable Trajectory-Aware Adaptive Token Sampler (TATS), which models the motion dynamics of tokens and can be seamlessly integrated into the masked autoencoder (MAE) framework to select motion-centric tokens in videos. Additionally, we propose a unified training strategy that enables joint optimization of both MAE and TATS from scratch using Proximal Policy Optimization (PPO). We show that our model allows for aggressive masking without compromising performance on the downstream task of action recognition while also ensuring that the pre-training remains memory efficient. Extensive experiments of the proposed approach across four benchmarks, including Something-Something v2, Kinetics-400, UCF101, and HMDB51, demonstrate the effectiveness, transferability, generalization, and efficiency of our work compared to other state-of-the-art methods.

Accep...

Accepted in ICCVW 2025 - Long Multi-Scene Video Foundations Workshop

Efficient Methods for Accurate Sparse Trajectory Recovery and Map Matching 2025-08-14
Show

Real-world trajectories are often sparse with low-sampling rates (i.e., long intervals between consecutive GPS points) and misaligned with road networks, yet many applications demand high-quality data for optimal performance. To improve data quality with sparse trajectories as input, we systematically study two related research problems: trajectory recovery on road network, which aims to infer missing points to recover high-sampling trajectories, and map matching, which aims to map GPS points to road segments to determine underlying routes. In this paper, we present efficient methods TRMMA and MMA for accurate trajectory recovery and map matching, respectively, where MMA serves as the first step of TRMMA. In MMA, we carefully formulate a classification task to map a GPS point from sparse trajectories to a road segment over a small candidate segment set, rather than the entire road network. We develop techniques in MMA to generate effective embeddings that capture the patterns of GPS data, directional information, and road segments, to accurately align sparse trajectories to routes. For trajectory recovery, TRMMA focuses on the segments in the route returned by MMA to infer missing points with position ratios on road segments, producing high-sampling trajectories efficiently by avoiding evaluation of all road segments. Specifically, in TRMMA, we design a dual-transformer encoding process to cohesively capture latent patterns in trajectories and routes, and an effective decoding technique to sequentially predict the position ratios and road segments of missing points. We conduct extensive experiments to compare TRMMA and MMA with numerous existing methods for trajectory recovery and map matching, respectively, on 4 large real-world datasets. TRMMA and MMA consistently achieve the best result quality, often by a significant margin.

13 pa...

13 pages, accepted by 2025 IEEE 41st International Conference on Data Engineering (ICDE)

Trajectory-aware Shifted State Space Models for Online Video Super-Resolution 2025-08-14
Show

Online video super-resolution (VSR) is an important technique for many real-world video processing applications, which aims to restore the current high-resolution video frame based on temporally previous frames. Most of the existing online VSR methods solely employ one neighboring previous frame to achieve temporal alignment, which limits long-range temporal modeling of videos. Recently, state space models (SSMs) have been proposed with linear computational complexity and a global receptive field, which significantly improve computational efficiency and performance. In this context, this paper presents a novel online VSR method based on Trajectory-aware Shifted SSMs (TS-Mamba), leveraging both long-term trajectory modeling and low-complexity Mamba to achieve efficient spatio-temporal information aggregation. Specifically, TS-Mamba first constructs the trajectories within a video to select the most similar tokens from the previous frames. Then, a Trajectory-aware Shifted Mamba Aggregation (TSMA) module consisting of proposed shifted SSMs blocks is employed to aggregate the selected tokens. The shifted SSMs blocks are designed based on Hilbert scannings and corresponding shift operations to compensate for scanning losses and strengthen the spatial continuity of Mamba. Additionally, we propose a trajectory-aware loss function to supervise the trajectory generation, ensuring the accuracy of token selection when training our model. Extensive experiments on three widely used VSR test datasets demonstrate that compared with six online VSR benchmark models, our TS-Mamba achieves state-of-the-art performance in most cases and over 22.7% complexity reduction (in MACs). The source code for TS-Mamba will be available at https://github.com.

Systematic Constraint Formulation and Collision-Free Trajectory Planning Using Space-Time Graphs of Convex Sets 2025-08-13
Show

In this paper, we create optimal, collision-free, time-dependent trajectories through cluttered dynamic environments. The many spatial and temporal constraints make finding an initial guess for a numerical solver difficult. Graphs of Convex Sets (GCS) and the recently developed Space-Time Graphs of Convex Sets formulation (ST-GCS) enable us to generate optimal minimum distance collision-free trajectories without providing an initial guess to the solver. We also explore the derivation of general GCS-compatible constraints and document an intuitive strategy for adapting general constraints to the framework. We show that ST-GCS produces equivalent trajectories to the standard GCS formulation when the environment is static. We then show ST-GCS operating in dynamic environments to find minimum distance collision-free trajectories.

21 pa...

21 pages with references, 20 figures

MIAT: Maneuver-Intention-Aware Transformer for Spatio-Temporal Trajectory Prediction 2025-08-13
Show

Accurate vehicle trajectory prediction is critical for safe and efficient autonomous driving, especially in mixed traffic environments when both human-driven and autonomous vehicles co-exist. However, uncertainties introduced by inherent driving behaviors -- such as acceleration, deceleration, and left and right maneuvers -- pose significant challenges for reliable trajectory prediction. We introduce a Maneuver-Intention-Aware Transformer (MIAT) architecture, which integrates a maneuver intention awareness control mechanism with spatiotemporal interaction modeling to enhance long-horizon trajectory predictions. We systematically investigate the impact of varying awareness of maneuver intention on both short- and long-horizon trajectory predictions. Evaluated on the real-world NGSIM dataset and benchmarked against various transformer- and LSTM-based methods, our approach achieves an improvement of up to 4.7% in short-horizon predictions and a 1.6% in long-horizon predictions compared to other intention-aware benchmark methods. Moreover, by leveraging intention awareness control mechanism, MIAT realizes an 11.1% performance boost in long-horizon predictions, with a modest drop in short-horizon performance. The source code and datasets are available at https://github.com/cpraskoti/MIAT.

Accep...

Accepted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2025

ParkDiffusion: Heterogeneous Multi-Agent Multi-Modal Trajectory Prediction for Automated Parking using Diffusion Models 2025-08-13
Show

Automated parking is a critical feature of Advanced Driver Assistance Systems (ADAS), where accurate trajectory prediction is essential to bridge perception and planning modules. Despite its significance, research in this domain remains relatively limited, with most existing studies concentrating on single-modal trajectory prediction of vehicles. In this work, we propose ParkDiffusion, a novel approach that predicts the trajectories of both vehicles and pedestrians in automated parking scenarios. ParkDiffusion employs diffusion models to capture the inherent uncertainty and multi-modality of future trajectories, incorporating several key innovations. First, we propose a dual map encoder that processes soft semantic cues and hard geometric constraints using a two-step cross-attention mechanism. Second, we introduce an adaptive agent type embedding module, which dynamically conditions the prediction process on the distinct characteristics of vehicles and pedestrians. Third, to ensure kinematic feasibility, our model outputs control signals that are subsequently used within a kinematic framework to generate physically feasible trajectories. We evaluate ParkDiffusion on the Dragon Lake Parking (DLP) dataset and the Intersections Drone (inD) dataset. Our work establishes a new baseline for heterogeneous trajectory prediction in parking scenarios, outperforming existing methods by a considerable margin.

IROS ...

IROS 2025 Camera-Ready Version

Counting Short Trajectories in Elementary Cellular Automata using the Transfer Matrix Method 2025-08-13
Show

Elementary Cellular Automata (ECAs) exhibit diverse behaviours often categorized by Wolfram's qualitative classification. To provide a quantitative basis for understanding these behaviours, we investigate the global dynamics of such automata and we describe a method that allows us to compute the number of all configurations leading to short attractors in a limited number of time steps. This computation yields exact results in the thermodynamic limit (as the CA grid size grows to infinity), and is based on the Transfer Matrix Method (TMM) that we adapt for our purposes. Specifically, given two parameters $(p, c)$ we are able to compute the entropy of all initial configurations converging to an attractor of size $c$ after $p$ time-steps. By calculating such statistics for various ECA rules, we establish a quantitative connection between the entropy and the qualitative Wolfram classification scheme. Class 1 rules rapidly converge to maximal entropy for stationary states ($c=1$) as $p$ increases. Class 2 rules also approach maximal entropy quickly for appropriate cycle lengths $c$, potentially requiring consideration of translations. Class 3 rules exhibit zero or low finite entropy that saturates after a short transient. Class 4 rules show finite positive entropy, similar to some Class 3 rules. This method provides a precise framework for quantifying trajectory statistics, although its exponential computational cost in $p+c$ restricts practical analysis to short trajectories.

10 pa...

10 pages, 8 figures, 1 table, accepted to ALife 2025

MetaFold: Language-Guided Multi-Category Garment Folding Framework via Trajectory Generation and Foundation Model 2025-08-13
Show

Garment folding is a common yet challenging task in robotic manipulation. The deformability of garments leads to a vast state space and complex dynamics, which complicates precise and fine-grained manipulation. Previous approaches often rely on predefined key points or demonstrations, limiting their generalization across diverse garment categories. This paper presents a framework, MetaFold, that disentangles task planning from action prediction, learning each independently to enhance model generalization. It employs language-guided point cloud trajectory generation for task planning and a low-level foundation model for action prediction. This structure facilitates multi-category learning, enabling the model to adapt flexibly to various user instructions and folding tasks. Experimental results demonstrate the superiority of our proposed framework. Supplementary materials are available on our website: https://meta-fold.github.io/.

ESCoT: An Enhanced Step-based Coordinate Trajectory Planning Method for Multiple Car-like Robots 2025-08-13
Show

Multi-vehicle trajectory planning (MVTP) is one of the key challenges in multi-robot systems (MRSs) and has broad applications across various fields. This paper presents ESCoT, an enhanced step-based coordinate trajectory planning method for multiple car-like robots. ESCoT incorporates two key strategies: collaborative planning for local robot groups and replanning for duplicate configurations. These strategies effectively enhance the performance of step-based MVTP methods. Through extensive experiments, we show that ESCoT 1) in sparse scenarios, significantly improves solution quality compared to baseline step-based method, achieving up to 70% improvement in typical conflict scenarios and 34% in randomly generated scenarios, while maintaining high solving efficiency; and 2) in dense scenarios, outperforms all baseline methods, maintains a success rate of over 50% even in the most challenging configurations. The results demonstrate that ESCoT effectively solves MVTP, further extending the capabilities of step-based methods. Finally, practical robot tests validate the algorithm's applicability in real-world scenarios.

Deep Learning Warm Starts for Trajectory Optimization on the International Space Station 2025-08-13
Show

Trajectory optimization is a cornerstone of modern robot autonomy, enabling systems to compute trajectories and controls in real-time while respecting safety and physical constraints. However, it has seen limited usage in spaceflight applications due to its heavy computational demands that exceed the capability of most flight computers. In this work, we provide results on the first flight demonstration of using machine learning-based warm starts for accelerating trajectory optimization for the Astrobee free-flying robot on-board the International Space Station (ISS). We formulate a data-driven optimal control approach that trains a neural network to learn the structure of the trajectory generation problem being solved for by sequential convex programming (SCP). On-board, this trained neural network predicts solutions for the trajectory generation problem and relies on using the SCP solver to enforce safety constraints for the system. Our trained network reduces the number of solver iterations required for convergence in cases including rotational dynamics by 60% and in cases with obstacles drawn from the training distribution of the warm start model by 50%. This work represents a significant milestone in the use of learning-based control for spaceflight applications and a stepping stone for future advances in the use of machine learning for autonomous guidance, navigation, & control.

Submi...

Submitted to 2025 International Conference on Space Robotics (iSpaRo). Presented at RSS 2025 Workshop on Space Robotics

GSMT: Graph Fusion and Spatiotemporal TaskCorrection for Multi-Bus Trajectory Prediction 2025-08-12
Show

Accurate trajectory prediction for buses is crucial in intelligent transportation systems, particularly within urban environments. In developing regions where access to multimodal data is limited, relying solely on onboard GPS data remains indispensable despite inherent challenges. To address this problem, we propose GSMT, a hybrid model that integrates a Graph Attention Network (GAT) with a sequence-to-sequence Recurrent Neural Network (RNN), and incorporates a task corrector capable of extracting complex behavioral patterns from large-scale trajectory data. The task corrector clusters historical trajectories to identify distinct motion patterns and fine-tunes the predictions generated by the GAT and RNN. Specifically, GSMT fuses dynamic bus information and static station information through embedded hybrid networks to perform trajectory prediction, and applies the task corrector for secondary refinement after the initial predictions are generated. This two-stage approach enables multi-node trajectory prediction among buses operating in dense urban traffic environments under complex conditions. Experiments conducted on a real-world dataset from Kuala Lumpur, Malaysia, demonstrate that our method significantly outperforms existing approaches, achieving superior performance in both short-term and long-term trajectory prediction tasks.

This ...

This paper has been accepted by ITSC 2025

Follow-Your-Shape: Shape-Aware Image Editing via Trajectory-Guided Region Control 2025-08-12
Show

While recent flow-based image editing models demonstrate general-purpose capabilities across diverse tasks, they often struggle to specialize in challenging scenarios -- particularly those involving large-scale shape transformations. When performing such structural edits, these methods either fail to achieve the intended shape change or inadvertently alter non-target regions, resulting in degraded background quality. We propose Follow-Your-Shape, a training-free and mask-free framework that supports precise and controllable editing of object shapes while strictly preserving non-target content. Motivated by the divergence between inversion and editing trajectories, we compute a Trajectory Divergence Map (TDM) by comparing token-wise velocity differences between the inversion and denoising paths. The TDM enables precise localization of editable regions and guides a Scheduled KV Injection mechanism that ensures stable and faithful editing. To facilitate a rigorous evaluation, we introduce ReShapeBench, a new benchmark comprising 120 new images and enriched prompt pairs specifically curated for shape-aware editing. Experiments demonstrate that our method achieves superior editability and visual fidelity, particularly in tasks requiring large-scale shape replacement.

Proje...

Project webpage is available at https://follow-your-shape.github.io/

Multidimensional Adaptive Coefficient for Inference Trajectory Optimization in Flow and Diffusion 2025-08-12
Show

Flow and diffusion models have demonstrated strong performance and training stability across various tasks but lack two critical properties of simulation-based methods: freedom of dimensionality and adaptability to different inference trajectories. To address this limitation, we propose the Multidimensional Adaptive Coefficient (MAC), a plug-in module for flow and diffusion models that extends conventional unidimensional coefficients to multidimensional ones and enables inference trajectory-wise adaptation. MAC is trained via simulation-based feedback through adversarial refinement. Empirical results across diverse frameworks and datasets demonstrate that MAC enhances generative quality with high training efficiency. Consequently, our work offers a new perspective on inference trajectory optimality, encouraging future research to move beyond vector field design and to leverage training-efficient, simulation-based optimization.

ICML 2025 Paper
Capsizing-Guided Trajectory Optimization for Autonomous Navigation with Rough Terrain 2025-08-11
Show

It is a challenging task for ground robots to autonomously navigate in harsh environments due to the presence of non-trivial obstacles and uneven terrain. This requires trajectory planning that balances safety and efficiency. The primary challenge is to generate a feasible trajectory that prevents robot from tip-over while ensuring effective navigation. In this paper, we propose a capsizing-aware trajectory planner (CAP) to achieve trajectory planning on the uneven terrain. The tip-over stability of the robot on rough terrain is analyzed. Based on the tip-over stability, we define the traversable orientation, which indicates the safe range of robot orientations. This orientation is then incorporated into a capsizing-safety constraint for trajectory optimization. We employ a graph-based solver to compute a robust and feasible trajectory while adhering to the capsizing-safety constraint. Extensive simulation and real-world experiments validate the effectiveness and robustness of the proposed method. The results demonstrate that CAP outperforms existing state-of-the-art approaches, providing enhanced navigation performance on uneven terrains.

AIS-LLM: A Unified Framework for Maritime Trajectory Prediction, Anomaly Detection, and Collision Risk Assessment with Explainable Forecasting 2025-08-11
Show

With the increase in maritime traffic and the mandatory implementation of the Automatic Identification System (AIS), the importance and diversity of maritime traffic analysis tasks based on AIS data, such as vessel trajectory prediction, anomaly detection, and collision risk assessment, is rapidly growing. However, existing approaches tend to address these tasks individually, making it difficult to holistically consider complex maritime situations. To address this limitation, we propose a novel framework, AIS-LLM, which integrates time-series AIS data with a large language model (LLM). AIS-LLM consists of a Time-Series Encoder for processing AIS sequences, an LLM-based Prompt Encoder, a Cross-Modality Alignment Module for semantic alignment between time-series data and textual prompts, and an LLM-based Multi-Task Decoder. This architecture enables the simultaneous execution of three key tasks: trajectory prediction, anomaly detection, and risk assessment of vessel collisions within a single end-to-end system. Experimental results demonstrate that AIS-LLM outperforms existing methods across individual tasks, validating its effectiveness. Furthermore, by integratively analyzing task outputs to generate situation summaries and briefings, AIS-LLM presents the potential for more intelligent and efficient maritime traffic management.

Real-Time Moving Flock Detection in Pedestrian Trajectories Using Sequential Deep Learning Models 2025-08-11
Show

Understanding collective pedestrian movement is crucial for applications in crowd management, autonomous navigation, and human-robot interaction. This paper investigates the use of sequential deep learning models, including Recurrent Neural Networks (RNNs), Long Short-Term Memory (LSTM) networks, and Transformers, for real-time flock detection in multi-pedestrian trajectories. Our proposed approach consists of a two-stage process: first, a pre-trained binary classification model is used for pairwise trajectory classification, and second, the learned representations are applied to identify multi-agent flocks dynamically. We validate our method using real-world group movement datasets, demonstrating its robustness across varying sequence lengths and diverse movement patterns. Experimental results indicate that our model consistently detects pedestrian flocks with high accuracy and stability, even in dynamic and noisy environments. Furthermore, we extend our approach to identify other forms of collective motion, such as convoys and swarms, paving the way for more comprehensive multi-agent behavior analysis.

Collision-Free Trajectory Planning and control of Robotic Manipulator using Energy-Based Artificial Potential Field (E-APF) 2025-08-10
Show

Robotic trajectory planning in dynamic and cluttered environments remains a critical challenge, particularly when striving for both time efficiency and motion smoothness under actuation constraints. Traditional path planner, such as Artificial Potential Field (APF), offer computational efficiency but suffer from local minima issue due to position-based potential field functions and oscillatory motion near the obstacles due to Newtonian mechanics. To address this limitation, an Energy-based Artificial Potential Field (APF) framework is proposed in this paper that integrates position and velocity-dependent potential functions. E-APF ensures dynamic adaptability and mitigates local minima, enabling uninterrupted progression toward the goal. The proposed framework integrates E-APF with a hybrid trajectory optimizer that jointly minimizes jerk and execution time under velocity and acceleration constraints, ensuring geometric smoothness and time efficiency. The entire framework is validated in simulation using the 7-degree-of-freedom Kinova Gen3 robotic manipulator. The results demonstrate collision-free, smooth, time-efficient, and oscillation-free trajectory in the presence of obstacles, highlighting the efficacy of the combined trajectory optimization and real-time obstacle avoidance approach. This work lays the foundation for future integration with reactive control strategies and physical hardware deployment in real-world manipulation tasks.

3D Gaussian Representations with Motion Trajectory Field for Dynamic Scene Reconstruction 2025-08-10
Show

This paper addresses the challenge of novel-view synthesis and motion reconstruction of dynamic scenes from monocular video, which is critical for many robotic applications. Although Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS) have demonstrated remarkable success in rendering static scenes, extending them to reconstruct dynamic scenes remains challenging. In this work, we introduce a novel approach that combines 3DGS with a motion trajectory field, enabling precise handling of complex object motions and achieving physically plausible motion trajectories. By decoupling dynamic objects from static background, our method compactly optimizes the motion trajectory field. The approach incorporates time-invariant motion coefficients and shared motion trajectory bases to capture intricate motion patterns while minimizing optimization complexity. Extensive experiments demonstrate that our approach achieves state-of-the-art results in both novel-view synthesis and motion trajectory recovery from monocular video, advancing the capabilities of dynamic scene reconstruction.

Intention-Aware Diffusion Model for Pedestrian Trajectory Prediction 2025-08-10
Show

Predicting pedestrian motion trajectories is critical for the path planning and motion control of autonomous vehicles. Recent diffusion-based models have shown promising results in capturing the inherent stochasticity of pedestrian behavior for trajectory prediction. However, the absence of explicit semantic modelling of pedestrian intent in many diffusion-based methods may result in misinterpreted behaviors and reduced prediction accuracy. To address the above challenges, we propose a diffusion-based pedestrian trajectory prediction framework that incorporates both short-term and long-term motion intentions. Short-term intent is modelled using a residual polar representation, which decouples direction and magnitude to capture fine-grained local motion patterns. Long-term intent is estimated through a learnable, token-based endpoint predictor that generates multiple candidate goals with associated probabilities, enabling multimodal and context-aware intention modelling. Furthermore, we enhance the diffusion process by incorporating adaptive guidance and a residual noise predictor that dynamically refines denoising accuracy. The proposed framework is evaluated on the widely used ETH, UCY, and SDD benchmarks, demonstrating competitive results against state-of-the-art methods.

Graph Neural Networks

Title Date Abstract Comment
Will You Be Aware? Eye Tracking-Based Modeling of Situational Awareness in Augmented Reality 2025-09-02
Show

Augmented Reality (AR) systems, while enhancing task performance through real-time guidance, pose risks of inducing cognitive tunneling-a hyperfocus on virtual content that compromises situational awareness (SA) in safety-critical scenarios. This paper investigates SA in AR-guided cardiopulmonary resuscitation (CPR), where responders must balance effective compressions with vigilance to unpredictable hazards (e.g., patient vomiting). We developed an AR app on a Magic Leap 2 that overlays real-time CPR feedback (compression depth and rate) and conducted a user study with simulated unexpected incidents (e.g., bleeding) to evaluate SA, in which SA metrics were collected via observation and questionnaires administered during freeze-probe events. Eye tracking analysis revealed that higher SA levels were associated with greater saccadic amplitude and velocity, and with reduced proportion and frequency of fixations on virtual content. To predict SA, we propose FixGraphPool, a graph neural network that structures gaze events (fixations, saccades) into spatiotemporal graphs, effectively capturing dynamic attentional patterns. Our model achieved 83.0% accuracy (F1=81.0%), outperforming feature-based machine learning and state-of-the-art time-series models by leveraging domain knowledge and spatial-temporal information encoded in ET data. These findings demonstrate the potential of eye tracking for SA modeling in AR and highlight its utility in designing AR systems that ensure user safety and situational awareness.

Towards a Unified Textual Graph Framework for Spectral Reasoning via Physical and Chemical Information Fusion 2025-08-31
Show

Motivated by the limitations of current spectral analysis methods-such as reliance on single-modality data, limited generalizability, and poor interpretability-we propose a novel multi-modal spectral analysis framework that integrates prior knowledge graphs with Large Language Models. Our method explicitly bridges physical spectral measurements and chemical structural semantics by representing them in a unified Textual Graph format, enabling flexible, interpretable, and generalizable spectral understanding. Raw spectra are first transformed into TAGs, where nodes and edges are enriched with textual attributes describing both spectral properties and chemical context. These are then merged with relevant prior knowledge-including functional groups and molecular graphs-to form a Task Graph that incorporates "Prompt Nodes" supporting LLM-based contextual reasoning. A Graph Neural Network further processes this structure to complete downstream tasks. This unified design enables seamless multi-modal integration and automated feature decoding with minimal manual annotation. Our framework achieves consistently high performance across multiple spectral analysis tasks, including node-level, edge-level, and graph-level classification. It demonstrates robust generalization in both zero-shot and few-shot settings, highlighting its effectiveness in learning from limited data and supporting in-context reasoning. This work establishes a scalable and interpretable foundation for LLM-driven spectral analysis, unifying physical and chemical modalities for scientific applications.

We ne...

We need to further modify and supplement the experiment

UQGNN: Uncertainty Quantification of Graph Neural Networks for Multivariate Spatiotemporal Prediction 2025-08-31
Show

Spatiotemporal prediction plays a critical role in numerous real-world applications such as urban planning, transportation optimization, disaster response, and pandemic control. In recent years, researchers have made significant progress by developing advanced deep learning models for spatiotemporal prediction. However, most existing models are deterministic, i.e., predicting only the expected mean values without quantifying uncertainty, leading to potentially unreliable and inaccurate outcomes. While recent studies have introduced probabilistic models to quantify uncertainty, they typically focus on a single phenomenon (e.g., taxi, bike, crime, or traffic crashes), thereby neglecting the inherent correlations among heterogeneous urban phenomena. To address the research gap, we propose a novel Graph Neural Network with Uncertainty Quantification, termed UQGNN for multivariate spatiotemporal prediction. UQGNN introduces two key innovations: (i) an Interaction-aware Spatiotemporal Embedding Module that integrates a multivariate diffusion graph convolutional network and an interaction-aware temporal convolutional network to effectively capture complex spatial and temporal interaction patterns, and (ii) a multivariate probabilistic prediction module designed to estimate both expected mean values and associated uncertainties. Extensive experiments on four real-world multivariate spatiotemporal datasets from Shenzhen, New York City, and Chicago demonstrate that UQGNN consistently outperforms state-of-the-art baselines in both prediction accuracy and uncertainty quantification. For example, on the Shenzhen dataset, UQGNN achieves a 5% improvement in both prediction accuracy and uncertainty quantification.

10 pa...

10 pages, 7 figures, SIGSPATIAL 2025

FIT-GNN: Faster Inference Time for GNNs that 'FIT' in Memory Using Coarsening 2025-08-31
Show

Scalability of Graph Neural Networks (GNNs) remains a significant challenge. To tackle this, methods like coarsening, condensation, and computation trees are used to train on a smaller graph, resulting in faster computation. Nonetheless, prior research has not adequately addressed the computational costs during the inference phase. This paper presents a novel approach to improve the scalability of GNNs by reducing computational burden during the inference phase using graph coarsening. We demonstrate two different methods -- Extra Nodes and Cluster Nodes. Our study extends the application of graph coarsening for graph-level tasks, including graph classification and graph regression. We conduct extensive experiments on multiple benchmark datasets to evaluate the performance of our approach. Our results show that the proposed method achieves orders of magnitude improvements in single-node inference time compared to traditional approaches. Furthermore, it significantly reduces memory consumption for node and graph classification and regression tasks, enabling efficient training and inference on low-resource devices where conventional methods are impractical. Notably, these computational advantages are achieved while maintaining competitive performance relative to baseline models.

From Anchors to Answers: A Novel Node Tokenizer for Integrating Graph Structure into Large Language Models 2025-08-31
Show

Enabling large language models (LLMs) to effectively process and reason with graph-structured data remains a significant challenge despite their remarkable success in natural language tasks. Current approaches either convert graph structures into verbose textual descriptions, consuming substantial computational resources, or employ complex graph neural networks as tokenizers, which introduce significant training overhead. To bridge this gap, we present NT-LLM, a novel framework with an anchor-based positional encoding scheme for graph representation. Our approach strategically selects reference nodes as anchors and encodes each node's position relative to these anchors, capturing essential topological information without the computational burden of existing methods. Notably, we identify and address a fundamental issue: the inherent misalignment between discrete hop-based distances in graphs and continuous distances in embedding spaces. By implementing a rank-preserving objective for positional encoding pretraining, NT-LLM achieves superior performance across diverse graph tasks ranging from basic structural analysis to complex reasoning scenarios. Our comprehensive evaluation demonstrates that this lightweight yet powerful approach effectively enhances LLMs' ability to understand and reason with graph-structured information, offering an efficient solution for graph-based applications of language models.

Accep...

Accepted by CIKM 2025

Decomposing heterogeneous dynamical systems with graph neural networks 2025-08-31
Show

Natural physical, chemical, and biological dynamical systems are often complex, with heterogeneous components interacting in diverse ways. We show how simple graph neural networks can be designed to jointly learn the interaction rules and the latent heterogeneity from observable dynamics. The learned latent heterogeneity and dynamics can be used to virtually decompose the complex system which is necessary to infer and parameterize the underlying governing equations. We tested the approach with simulation experiments of interacting moving particles, vector fields, and signaling networks. While our current aim is to better understand and validate the approach with simulated data, we anticipate it to become a generally applicable tool to uncover the governing rules underlying complex dynamics observed in nature.

10 pa...

10 pages, 4 figures, 2 pages appendix, 2 supplementary tables, 18 supplementary figures, 14 videos linked to YouTube

Semantic Parsing for Question Answering over Knowledge Graphs 2025-08-30
Show

In this paper, we propose a novel method for question answering over knowledge graphs based on graph-to-segment mapping, designed to improve the understanding of natural language questions. Our approach is grounded in semantic parsing, a key technique for interpreting question utterances. The main challenges arise from handling implicit entities and relations, as well as complex constraints such as temporal conditions, ordinality, and aggregation within the context of a knowledge graph. To address these issues, our framework integrates both rule-based and neural methods to parse and construct accurate, comprehensive semantic segment sequences. These sequences are then assembled into semantic query graphs, providing precise representations of question utterances. We formulate question semantic parsing as a sequence generation task, employing an encoder-decoder neural network to map natural language questions into semantic segments. Furthermore, to enhance the identification of implicit entities and relations, we incorporate a graph neural network that leverages knowledge graph context to enrich question representations. Experimental evaluations on two benchmark datasets demonstrate the effectiveness and superior performance of our model in semantic parsing for knowledge graph question answering.

The Demon is in Ambiguity: Revisiting Situation Recognition with Single Positive Multi-Label Learning 2025-08-29
Show

Context recognition (SR) is a fundamental task in computer vision that aims to extract structured semantic summaries from images by identifying key events and their associated entities. Specifically, given an input image, the model must first classify the main visual events (verb classification), then identify the participating entities and their semantic roles (semantic role labeling), and finally localize these entities in the image (semantic role localization). Existing methods treat verb classification as a single-label problem, but we show through a comprehensive analysis that this formulation fails to address the inherent ambiguity in visual event recognition, as multiple verb categories may reasonably describe the same image. This paper makes three key contributions: First, we reveal through empirical analysis that verb classification is inherently a multi-label problem due to the ubiquitous semantic overlap between verb categories. Second, given the impracticality of fully annotating large-scale datasets with multiple labels, we propose to reformulate verb classification as a single positive multi-label learning (SPMLL) problem - a novel perspective in SR research. Third, we design a comprehensive multi-label evaluation benchmark for SR that is carefully designed to fairly evaluate model performance in a multi-label setting. To address the challenges of SPMLL, we futher develop the Graph Enhanced Verb Multilayer Perceptron (GE-VerbMLP), which combines graph neural networks to capture label correlations and adversarial training to optimize decision boundaries. Extensive experiments on real-world datasets show that our approach achieves more than 3% MAP improvement while remaining competitive on traditional top-1 and top-5 accuracy metrics.

Accep...

Accepted by ICDM 2025

On the Hardness of Learning GNN-based SAT Solvers: The Role of Graph Ricci Curvature 2025-08-29
Show

Graph Neural Networks (GNNs) have recently shown promise as solvers for Boolean Satisfiability Problems (SATs) by operating on graph representations of logical formulas. However, their performance degrades sharply on harder instances, raising the question of whether this reflects fundamental architectural limitations. In this work, we provide a geometric explanation through the lens of graph Ricci Curvature (RC), which quantifies local connectivity bottlenecks. We prove that bipartite graphs derived from random k-SAT formulas are inherently negatively curved, and that this curvature decreases with instance difficulty. Building on this, we show that GNN-based SAT solvers are affected by oversquashing, a phenomenon where long-range dependencies become impossible to compress into fixed-length representations. We validate our claims empirically across different SAT benchmarks and confirm that curvature is both a strong indicator of problem complexity and can be used to predict performance. Finally, we connect our findings to design principles of existing solvers and outline promising directions for future work.

Preprint
TorchCP: A Python Library for Conformal Prediction 2025-08-29
Show

Conformal prediction (CP) is a powerful statistical framework that generates prediction intervals or sets with guaranteed coverage probability. While CP algorithms have evolved beyond traditional classifiers and regressors to sophisticated deep learning models like deep neural networks (DNNs), graph neural networks (GNNs), and large language models (LLMs), existing CP libraries often lack the model support and scalability for large-scale DL scenarios. This paper introduces TorchCP, a PyTorch-native library designed to integrate state-of-the-art CP algorithms into deep learning techniques, including DNN-based classifier/regressor, GNN, and LLM. Released under the LGPL-3.0 license, TorchCP comprises about 16k lines of code, validated with 100% unit test coverage and detailed documentation. Notably, TorchCP enables CP-specific training algorithms, online prediction, and GPU-accelerated batch processing, achieving up to 90% reduction in inference time on large datasets. With its low-coupling design, comprehensive suite of advanced methods, and full GPU scalability, TorchCP empowers researchers and practitioners to enhance uncertainty quantification across cutting-edge applications.

Molecular Machine Learning in Chemical Process Design 2025-08-29
Show

We present a perspective on molecular machine learning (ML) in the field of chemical process engineering. Recently, molecular ML has demonstrated great potential in (i) providing highly accurate predictions for properties of pure components and their mixtures, and (ii) exploring the chemical space for new molecular structures. We review current state-of-the-art molecular ML models and discuss research directions that promise further advancements. This includes ML methods, such as graph neural networks and transformers, which can be further advanced through the incorporation of physicochemical knowledge in a hybrid or physics-informed fashion. Then, we consider leveraging molecular ML at the chemical process scale, which is highly desirable yet rather unexplored. We discuss how molecular ML can be integrated into process design and optimization formulations, promising to accelerate the identification of novel molecules and processes. To this end, it will be essential to create molecule and process design benchmarks and practically validate proposed candidates, possibly in collaboration with the chemical industry.

A Mixture of Experts Gating Network for Enhanced Surrogate Modeling in External Aerodynamics 2025-08-28
Show

The computational cost associated with high-fidelity CFD simulations remains a significant bottleneck in the automotive design and optimization cycle. While ML-based surrogate models have emerged as a promising alternative to accelerate aerodynamic predictions, the field is characterized by a diverse and rapidly evolving landscape of specialized neural network architectures, with no single model demonstrating universal superiority. This paper introduces a novel meta-learning framework that leverages this architectural diversity as a strength. We propose a Mixture of Experts (MoE) model that employs a dedicated gating network to dynamically and optimally combine the predictions from three heterogeneous, state-of-the-art surrogate models: DoMINO, a decomposable multi-scale neural operator; X-MeshGraphNet, a scalable multi-scale graph neural network; and FigConvNet, a factorized implicit global convolution network. The gating network learns a spatially-variant weighting strategy, assigning credibility to each expert based on its localized performance in predicting surface pressure and wall shear stress fields. To prevent model collapse and encourage balanced expert contributions, we integrate an entropy regularization term into the training loss function. The entire system is trained and validated on the DrivAerML dataset, a large-scale, public benchmark of high-fidelity CFD simulations for automotive aerodynamics. Quantitative results demonstrate that the MoE model achieves a significant reduction in L-2 prediction error, outperforming not only the ensemble average but also the most accurate individual expert model across all evaluated physical quantities. This work establishes the MoE framework as a powerful and effective strategy for creating more robust and accurate composite surrogate models by synergistically combining the complementary strengths of specialized architectures.

Memorization in Graph Neural Networks 2025-08-28
Show

Deep neural networks (DNNs) have been shown to memorize their training data, yet similar analyses for graph neural networks (GNNs) remain largely under-explored. We introduce NCMemo (Node Classification Memorization), the first framework to quantify label memorization in semi-supervised node classification. We first establish an inverse relationship between memorization and graph homophily, i.e., the property that connected nodes share similar labels/features. We find that lower homophily significantly increases memorization, indicating that GNNs rely on memorization to learn less homophilic graphs. Secondly, we analyze GNN training dynamics. We find that the increased memorization in low homophily graphs is tightly coupled to the GNNs' implicit bias on using graph structure during learning. In low homophily regimes, this structure is less informative, hence inducing memorization of the node labels to minimize training loss. Finally, we show that nodes with higher label inconsistency in their feature-space neighborhood are significantly more prone to memorization. Building on our insights into the link between graph homophily and memorization, we investigate graph rewiring as a means to mitigate memorization. Our results demonstrate that this approach effectively reduces memorization without compromising model performance. Moreover, we show that it lowers the privacy risk for previously memorized data points in practice. Thus, our work not only advances understanding of GNN learning but also supports more privacy-preserving GNN deployment.

Versi...

Version2, With updated code repo

Graph-Based Feature Augmentation for Predictive Tasks on Relational Datasets 2025-08-28
Show

Data has become a foundational asset driving innovation across domains such as finance, healthcare, and e-commerce. In these areas, predictive modeling over relational tables is commonly employed, with increasing emphasis on reducing manual effort through automated machine learning (AutoML) techniques. This raises an interesting question: can feature augmentation itself be automated and identify and utilize task-related relational signals? To address this challenge, we propose an end-to-end automated feature augmentation framework, ReCoGNN, which enhances initial datasets using features extracted from multiple relational tables to support predictive tasks. ReCoGNN first captures semantic dependencies within each table by modeling intra-table attribute relationships, enabling it to partition tables into structured, semantically coherent segments. It then constructs a heterogeneous weighted graph that represents inter-row relationships across all segments. Finally, ReCoGNN leverages message-passing graph neural networks to propagate information through the graph, guiding feature selection and augmenting the original dataset. Extensive experiments conducted on ten real-life and synthetic datasets demonstrate that ReCoGNN consistently outperforms existing methods on both classification and regression tasks.

Deep Learning Based Concurrency Bug Detection and Localization 2025-08-28
Show

Concurrency bugs, caused by improper synchronization of shared resources in multi-threaded or distributed systems, are notoriously hard to detect and thus compromise software reliability and security. The existing deep learning methods face three main limitations. First, there is an absence of large and dedicated datasets of diverse concurrency bugs for them. Second, they lack sufficient representation of concurrency semantics. Third, binary classification results fail to provide finer-grained debug information such as precise bug lines. To address these problems, we propose a novel method for effective concurrency bug detection as well as localization. We construct a dedicated concurrency bug dataset to facilitate model training and evaluation. We then integrate a pre-trained model with a heterogeneous graph neural network (GNN), by incorporating a new Concurrency-Aware Code Property Graph (CCPG) that concisely and effectively characterizes concurrency semantics. To further facilitate debugging, we employ SubgraphX, a GNN-based interpretability method, which explores the graphs to precisely localize concurrency bugs, mapping them to specific lines of source code. On average, our method demonstrates an improvement of 10% in accuracy and precision and 26% in recall compared to state-of-the-art methods across diverse evaluation settings.

ADAGE: Active Defenses Against GNN Extraction 2025-08-28
Show

Graph Neural Networks (GNNs) achieve high performance in various real-world applications, such as drug discovery, traffic states prediction, and recommendation systems. The fact that building powerful GNNs requires a large amount of training data, powerful computing resources, and human expertise turns the models into lucrative targets for model stealing attacks. Prior work has revealed that the threat vector of stealing attacks against GNNs is large and diverse, as an attacker can leverage various heterogeneous signals ranging from node labels to high-dimensional node embeddings to create a local copy of the target GNN at a fraction of the original training costs. This diversity in the threat vector renders the design of effective and general defenses challenging and existing defenses usually focus on one particular stealing setup. Additionally, they solely provide means to identify stolen model copies rather than preventing the attack. To close this gap, we propose the first and general Active Defense Against GNN Extraction (ADAGE). ADAGE builds on the observation that stealing a model's full functionality requires highly diverse queries to leak its behavior across the input space. Our defense monitors this query diversity and progressively perturbs outputs as the accumulated leakage grows. In contrast to prior work, ADAGE can prevent stealing across all common attack setups. Our extensive experimental evaluation using six benchmark datasets, four GNN models, and three types of adaptive attackers shows that ADAGE penalizes attackers to the degree of rendering stealing impossible, whilst preserving predictive performance on downstream tasks. ADAGE, thereby, contributes towards securely sharing valuable GNNs in the future.

Not a...

Not all authors have given their explicit consent

ATM-GAD: Adaptive Temporal Motif Graph Anomaly Detection for Financial Transaction Networks 2025-08-28
Show

Financial fraud detection is essential to safeguard billions of dollars, yet the intertwined entities and fast-changing transaction behaviors in modern financial systems routinely defeat conventional machine learning models. Recent graph-based detectors make headway by representing transactions as networks, but they still overlook two fraud hallmarks rooted in time: (1) temporal motifs--recurring, telltale subgraphs that reveal suspicious money flows as they unfold--and (2) account-specific intervals of anomalous activity, when fraud surfaces only in short bursts unique to each entity. To exploit both signals, we introduce ATM-GAD, an adaptive graph neural network that leverages temporal motifs for financial anomaly detection. A Temporal Motif Extractor condenses each account's transaction history into the most informative motifs, preserving both topology and temporal patterns. These motifs are then analyzed by dual-attention blocks: IntraA reasons over interactions within a single motif, while InterA aggregates evidence across motifs to expose multi-step fraud schemes. In parallel, a differentiable Adaptive Time-Window Learner tailors the observation window for every node, allowing the model to focus precisely on the most revealing time slices. Experiments on four real-world datasets show that ATM-GAD consistently outperforms seven strong anomaly-detection baselines, uncovering fraud patterns missed by earlier methods.

Graph Data Modeling: Molecules, Proteins, & Chemical Processes 2025-08-28
Show

Graphs are central to the chemical sciences, providing a natural language to describe molecules, proteins, reactions, and industrial processes. They capture interactions and structures that underpin materials, biology, and medicine. This primer, Graph Data Modeling: Molecules, Proteins, & Chemical Processes, introduces graphs as mathematical objects in chemistry and shows how learning algorithms (particularly graph neural networks) can operate on them. We outline the foundations of graph design, key prediction tasks, representative examples across chemical sciences, and the role of machine learning in graph-based modeling. Together, these concepts prepare readers to apply graph methods to the next generation of chemical discovery.

3 to ...

3 to 4 hours read time. 73 pages. 35 figures

Quantum Graph Attention Network: A Novel Quantum Multi-Head Attention Mechanism for Graph Learning 2025-08-28
Show

We propose the Quantum Graph Attention Network (QGAT), a hybrid graph neural network that integrates variational quantum circuits into the attention mechanism. At its core, QGAT employs strongly entangling quantum circuits with amplitude-encoded node features to enable expressive nonlinear interactions. Distinct from classical multi-head attention that separately computes each head, QGAT leverages a single quantum circuit to simultaneously generate multiple attention coefficients. This quantum parallelism facilitates parameter sharing across heads, substantially reducing computational overhead and model complexity. Classical projection weights and quantum circuit parameters are optimized jointly in an end-to-end manner, ensuring flexible adaptation to learning tasks. Empirical results demonstrate QGAT's effectiveness in capturing complex structural dependencies and improved generalization in inductive scenarios, highlighting its potential for scalable quantum-enhanced learning across domains such as chemistry, biology, and network analysis. Furthermore, experiments confirm that quantum embedding enhances robustness against feature and structural noise, suggesting advantages in handling real-world noisy data. The modularity of QGAT also ensures straightforward integration into existing architectures, allowing it to easily augment classical attention-based models.

LASE: Learned Adjacency Spectral Embeddings 2025-08-28
Show

We put forth a principled design of a neural architecture to learn nodal Adjacency Spectral Embeddings (ASE) from graph inputs. By bringing to bear the gradient descent (GD) method and leveraging the principle of algorithm unrolling, we truncate and re-interpret each GD iteration as a layer in a graph neural network (GNN) that is trained to approximate the ASE. Accordingly, we call the resulting embeddings and our parametric model Learned ASE (LASE), which is interpretable, parameter efficient, robust to inputs with unobserved edges, and offers controllable complexity during inference. LASE layers combine Graph Convolutional Network (GCN) and fully-connected Graph Attention Network (GAT) modules, which is intuitively pleasing since GCN-based local aggregations alone are insufficient to express the sought graph eigenvectors. We propose several refinements to the unrolled LASE architecture (such as sparse attention in the GAT module and decoupled layerwise parameters) that offer favorable approximation error versus computation tradeoffs; even outperforming heavily-optimized eigendecomposition routines from scientific computing libraries. Because LASE is a differentiable function with respect to its parameters as well as its graph input, we can seamlessly integrate it as a trainable module within a larger (semi-)supervised graph representation learning pipeline. The resulting end-to-end system effectively learns ``discriminative ASEs'' that exhibit competitive performance in supervised link prediction and node classification tasks, outperforming a GNN even when the latter is endowed with open loop, meaning task-agnostic, precomputed spectral positional encodings.

Local Virtual Nodes for Alleviating Over-Squashing in Graph Neural Networks 2025-08-28
Show

Over-squashing is a challenge in training graph neural networks for tasks involving long-range dependencies. In such tasks, a GNN's receptive field should be large enough to enable communication between distant nodes. However, gathering information from a wide range of neighborhoods and squashing its content into fixed-size node representations makes message-passing vulnerable to bottlenecks. Graph rewiring and adding virtual nodes are commonly studied remedies that create additional pathways around bottlenecks to mitigate over-squashing. However, these techniques alter the input graph's global topology and disrupt the domain knowledge encoded in the original graph structure, both of which could be essential to specific tasks and domains. This study presents Local Virtual Nodes (LVN) with trainable embeddings to alleviate the effects of over-squashing without significantly corrupting the global structure of the input graph. The position of the LVNs is determined by the node centrality, which indicates the existence of potential bottlenecks. Thus, the proposed approach aims to improve the connectivity in the regions with likely bottlenecks. Furthermore, trainable LVN embeddings shared across selected central regions facilitate communication between distant nodes without adding more layers. Extensive experiments on benchmark datasets demonstrate that LVNs can enhance structural connectivity and significantly improve performance on graph and node classification tasks. The code can be found at https://github.com/ALLab-Boun/LVN/}{https://github.com/ALLab-Boun/LVN/.

A Graph Talks, But Who's Listening? Rethinking Evaluations for Graph-Language Models 2025-08-28
Show

Developments in Graph-Language Models (GLMs) aim to integrate the structural reasoning capabilities of Graph Neural Networks (GNNs) with the semantic understanding of Large Language Models (LLMs). However, we demonstrate that current evaluation benchmarks for GLMs, which are primarily repurposed node-level classification datasets, are insufficient to assess multimodal reasoning. Our analysis reveals that strong performance on these benchmarks is achievable using unimodal information alone, suggesting that they do not necessitate graph-language integration. To address this evaluation gap, we introduce the CLEGR(Compositional Language-Graph Reasoning) benchmark, designed to evaluate multimodal reasoning at various complexity levels. Our benchmark employs a synthetic graph generation pipeline paired with questions that require joint reasoning over structure and textual semantics. We perform a thorough evaluation of representative GLM architectures and find that soft-prompted LLM baselines perform on par with GLMs that incorporate a full GNN backbone. This result calls into question the architectural necessity of incorporating graph structure into LLMs. We further show that GLMs exhibit significant performance degradation in tasks that require structural reasoning. These findings highlight limitations in the graph reasoning capabilities of current GLMs and provide a foundation for advancing the community toward explicit multimodal reasoning involving graph structure and language.

GLaRE: A Graph-based Landmark Region Embedding Network for Emotion Recognition 2025-08-28
Show

Facial expression recognition (FER) is a crucial task in computer vision with wide range of applications including human computer interaction, surveillance, and assistive technologies. However, challenges such as occlusion, expression variability, and lack of interpretability hinder the performance of traditional FER systems. Graph Neural Networks (GNNs) offer a powerful alternative by modeling relational dependencies between facial landmarks, enabling structured and interpretable learning. In this paper, we propose GLaRE, a novel Graph-based Landmark Region Embedding network for emotion recognition. Facial landmarks are extracted using 3D facial alignment, and a quotient graph is constructed via hierarchical coarsening to preserve spatial structure while reducing complexity. Our method achieves 64.89 percentage accuracy on AffectNet and 94.24 percentage on FERG, outperforming several existing baselines. Additionally, ablation studies have demonstrated that region-level embeddings from quotient graphs have contributed to improved prediction performance.

11 pages, 6 figures
Dynamic Triangulation-Based Graph Rewiring for Graph Neural Networks 2025-08-28
Show

Graph Neural Networks (GNNs) have emerged as the leading paradigm for learning over graph-structured data. However, their performance is limited by issues inherent to graph topology, most notably oversquashing and oversmoothing. Recent advances in graph rewiring aim to mitigate these limitations by modifying the graph topology to promote more effective information propagation. In this work, we introduce TRIGON, a novel framework that constructs enriched, non-planar triangulations by learning to select relevant triangles from multiple graph views. By jointly optimizing triangle selection and downstream classification performance, our method produces a rewired graph with markedly improved structural properties such as reduced diameter, increased spectral gap, and lower effective resistance compared to existing rewiring methods. Empirical results demonstrate that TRIGON outperforms state-of-the-art approaches on node classification tasks across a range of homophilic and heterophilic benchmarks.

Accep...

Accepted to CIKM 2025

Reconsidering the Performance of GAE in Link Prediction 2025-08-28
Show

Recent advancements in graph neural networks (GNNs) for link prediction have introduced sophisticated training techniques and model architectures. However, reliance on outdated baselines may exaggerate the benefits of these new approaches. To tackle this issue, we systematically explore Graph Autoencoders (GAEs) by applying model-agnostic tricks in recent methods and tuning hyperparameters. We find that a well-tuned GAE can match the performance of recent sophisticated models while offering superior computational efficiency on widely-used link prediction benchmarks. Our approach delivers substantial performance gains on datasets where structural information dominates and feature data is limited. Specifically, our GAE achieves a state-of-the-art Hits@100 score of 78.41% on the ogbl-ppa dataset. Furthermore, we examine the impact of various tricks to uncover the reasons behind our success and to guide the design of future methods. Our study emphasizes the critical need to update baselines for a more accurate assessment of progress in GNNs for link prediction. Our code is available at https://github.com/GraphPKU/Refined-GAE.

Accep...

Accepted at CIKM 2025

Graph-R1: Incentivizing the Zero-Shot Graph Learning Capability in LLMs via Explicit Reasoning 2025-08-28
Show

Generalizing to unseen graph tasks without task-pecific supervision remains challenging. Graph Neural Networks (GNNs) are limited by fixed label spaces, while Large Language Models (LLMs) lack structural inductive biases. Recent advances in Large Reasoning Models (LRMs) provide a zero-shot alternative via explicit, long chain-of-thought reasoning. Inspired by this, we propose a GNN-free approach that reformulates graph tasks--node classification, link prediction, and graph classification--as textual reasoning problems solved by LRMs. We introduce the first datasets with detailed reasoning traces for these tasks and develop Graph-R1, a reinforcement learning framework that leverages task-specific rethink templates to guide reasoning over linearized graphs. Experiments demonstrate that Graph-R1 outperforms state-of-the-art baselines in zero-shot settings, producing interpretable and effective predictions. Our work highlights the promise of explicit reasoning for graph learning and provides new resources for future research.

Accep...

Accepted at EMNLP 2025

Structure-aware Hypergraph Transformer for Diagnosis Prediction in Electronic Health Records 2025-08-28
Show

Electronic Health Records (EHR) systematically organize patient health data through standardized medical codes, serving as a comprehensive and invaluable source for predictive modeling. Graph neural networks (GNNs) have demonstrated effectiveness in modeling interactions between medical codes within EHR. However, existing GNN-based methods are inadequate due to: a) their reliance on pairwise relations fails to capture the inherent higher-order dependencies in clinical data, and b) the localized message-passing scheme limits representation power. To address these issues, this paper proposes a novel Structure-aware HyperGraph Transformer (SHGT) framework following three-fold ideas: a) employing a hypergraph structural encoder to capture higher-order interactions among medical codes, b) integrating the Transformer architecture to reason over the entire hypergraph, and c) designing a tailored loss function incorporating hypergraph reconstruction to preserve the hypergraph's original structure. Experiments on real-world EHR datasets demonstrate that the proposed SHGT outperforms existing state-of-the-art models on diagnosis prediction.

High-Rank Irreducible Cartesian Tensor Decomposition and Bases of Equivariant Spaces 2025-08-28
Show

Irreducible Cartesian tensors (ICTs) play a crucial role in the design of equivariant graph neural networks, as well as in theoretical chemistry and chemical physics. Meanwhile, the design space of available linear operations on tensors that preserve symmetry presents a significant challenge. The ICT decomposition and a basis of this equivariant space are difficult to obtain for high-rank tensors. After decades of research, Bonvicini (2024) has recently achieved an explicit ICT decomposition for $n=5$ with factorial time/space complexity. In this work we, for the first time, obtain decomposition matrices for ICTs up to rank $n=9$ with reduced and affordable complexity, by constructing what we call path matrices. The path matrices are obtained via performing chain-like contractions with Clebsch-Gordan matrices following the parentage scheme. We prove and leverage that the concatenation of path matrices is an orthonormal change-of-basis matrix between the Cartesian tensor product space and the spherical direct sum spaces. Furthermore, we identify a complete orthogonal basis for the equivariant space, rather than a spanning set (Pearce-Crump, 2023b), through this path matrices technique. Our method avoids the RREF algorithm and maintains a fully analytical derivation of each ICT decomposition matrix, thereby significantly improving the algorithm's speed to obtain arbitrary rank orthogonal ICT decomposition matrices and orthogonal equivariant bases. We further extend our result to the arbitrary tensor product and direct sum spaces, enabling free design between different spaces while keeping symmetry. The Python code is available at https://github.com/ShihaoShao-GH/ICT-decomposition-and-equivariant-bases, where the $n=6,\dots,9$ ICT decomposition matrices are obtained in 1s, 3s, 11s, and 4m32s on 28-core Intel(R) Xeon(R) Gold 6330 CPU @ 2.00GHz, respectively.

53 pa...

53 pages. Accepted to JMLR

Parameter-Free Structural-Diversity Message Passing for Graph Neural Networks 2025-08-28
Show

Graph Neural Networks (GNNs) have shown remarkable performance in structured data modeling tasks such as node classification. However, mainstream approaches generally rely on a large number of trainable parameters and fixed aggregation rules, making it difficult to adapt to graph data with strong structural heterogeneity and complex feature distributions. This often leads to over-smoothing of node representations and semantic degradation. To address these issues, this paper proposes a parameter-free graph neural network framework based on structural diversity, namely SDGNN (Structural-Diversity Graph Neural Network). The framework is inspired by structural diversity theory and designs a unified structural-diversity message passing mechanism that simultaneously captures the heterogeneity of neighborhood structures and the stability of feature semantics, without introducing additional trainable parameters. Unlike traditional parameterized methods, SDGNN does not rely on complex model training, but instead leverages complementary modeling from both structure-driven and feature-driven perspectives, thereby effectively improving adaptability across datasets and scenarios. Experimental results show that on eight public benchmark datasets and an interdisciplinary PubMed citation network, SDGNN consistently outperforms mainstream GNNs under challenging conditions such as low supervision, class imbalance, and cross-domain transfer. This work provides a new theoretical perspective and general approach for the design of parameter-free graph neural networks, and further validates the importance of structural diversity as a core signal in graph representation learning. To facilitate reproducibility and further research, the full implementation of SDGNN has been released at: https://github.com/mingyue15694/SGDNN/tree/main

50 pages, 6 figures
GegenNet: Spectral Convolutional Neural Networks for Link Sign Prediction in Signed Bipartite Graphs 2025-08-27
Show

Given a signed bipartite graph (SBG) G with two disjoint node sets U and V, the goal of link sign prediction is to predict the signs of potential links connecting U and V based on known positive and negative edges in G. The majority of existing solutions towards link sign prediction mainly focus on unipartite signed graphs, which are sub-optimal due to the neglect of node heterogeneity and unique bipartite characteristics of SBGs. To this end, recent studies adapt graph neural networks to SBGs by introducing message-passing schemes for both inter-partition (UxV) and intra-partition (UxU or VxV) node pairs. However, the fundamental spectral convolutional operators were originally designed for positive links in unsigned graphs, and thus, are not optimal for inferring missing positive or negative links from known ones in SBGs. Motivated by this, this paper proposes GegenNet, a novel and effective spectral convolutional neural network model for link sign prediction in SBGs. In particular, GegenNet achieves enhanced model capacity and high predictive accuracy through three main technical contributions: (i) fast and theoretically grounded spectral decomposition techniques for node feature initialization; (ii) a new spectral graph filter based on the Gegenbauer polynomial basis; and (iii) multi-layer sign-aware spectral convolutional networks alternating Gegenbauer polynomial filters with positive and negative edges. Our extensive empirical studies reveal that GegenNet can achieve significantly superior performance (up to a gain of 4.28% in AUC and 11.69% in F1) in link sign prediction compared to 11 strong competitors over 6 benchmark SBG datasets.

11 pa...

11 pages. Paper accepted to CIKM 2025

InfraredGP: Efficient Graph Partitioning via Spectral Graph Neural Networks with Negative Corrections 2025-08-27
Show

Graph partitioning (GP), a.k.a. community detection, is a classic problem that divides nodes of a graph into densely-connected blocks. From a perspective of graph signal processing, we find that graph Laplacian with a negative correction can derive graph frequencies beyond the conventional range $[0, 2]$. To explore whether the low-frequency information beyond this range can encode more informative properties about community structures, we propose InfraredGP. It (\romannumeral1) adopts a spectral GNN as its backbone combined with low-pass filters and a negative correction mechanism, (\romannumeral2) only feeds random inputs to this backbone, (\romannumeral3) derives graph embeddings via one feed-forward propagation (FFP) without any training, and (\romannumeral4) obtains feasible GP results by feeding the derived embeddings to BIRCH. Surprisingly, our experiments demonstrate that based solely on the negative correction mechanism that amplifies low-frequency information beyond $[0, 2]$, InfraredGP can derive distinguishable embeddings for some standard clustering modules (e.g., BIRCH) and obtain high-quality results for GP without any training. Following the IEEE HPEC Graph Challenge benchmark, we evaluate InfraredGP for both static and streaming GP, where InfraredGP can achieve much better efficiency (e.g., 16x-23x faster) and competitive quality over various baselines. We have made our code public at https://github.com/KuroginQin/InfraredGP

UTAL-GNN: Unsupervised Temporal Action Localization using Graph Neural Networks 2025-08-27
Show

Fine-grained action localization in untrimmed sports videos presents a significant challenge due to rapid and subtle motion transitions over short durations. Existing supervised and weakly supervised solutions often rely on extensive annotated datasets and high-capacity models, making them computationally intensive and less adaptable to real-world scenarios. In this work, we introduce a lightweight and unsupervised skeleton-based action localization pipeline that leverages spatio-temporal graph neural representations. Our approach pre-trains an Attention-based Spatio-Temporal Graph Convolutional Network (ASTGCN) on a pose-sequence denoising task with blockwise partitions, enabling it to learn intrinsic motion dynamics without any manual labeling. At inference, we define a novel Action Dynamics Metric (ADM), computed directly from low-dimensional ASTGCN embeddings, which detects motion boundaries by identifying inflection points in its curvature profile. Our method achieves a mean Average Precision (mAP) of 82.66% and average localization latency of 29.09 ms on the DSV Diving dataset, matching state-of-the-art supervised performance while maintaining computational efficiency. Furthermore, it generalizes robustly to unseen, in-the-wild diving footage without retraining, demonstrating its practical applicability for lightweight, real-time action analysis systems in embedded or dynamic environments.

This ...

This paper has been accepted at the ICIP Satellite Workshop 2025

GIMS: Image Matching System Based on Adaptive Graph Construction and Graph Neural Network 2025-08-27
Show

Feature-based image matching has extensive applications in computer vision. Keypoints detected in images can be naturally represented as graph structures, and Graph Neural Networks (GNNs) have been shown to outperform traditional deep learning techniques. Consequently, the paradigm of image matching via GNNs has gained significant prominence in recent academic research. In this paper, we first introduce an innovative adaptive graph construction method that utilizes a filtering mechanism based on distance and dynamic threshold similarity. This method dynamically adjusts the criteria for incorporating new vertices based on the characteristics of existing vertices, allowing for the construction of more precise and robust graph structures while avoiding redundancy. We further combine the vertex processing capabilities of GNNs with the global awareness capabilities of Transformers to enhance the model's representation of spatial and feature information within graph structures. This hybrid model provides a deeper understanding of the interrelationships between vertices and their contributions to the matching process. Additionally, we employ the Sinkhorn algorithm to iteratively solve for optimal matching results. Finally, we validate our system using extensive image datasets and conduct comprehensive comparative experiments. Experimental results demonstrate that our system achieves an average improvement of 3.8x-40.3x in overall matching performance. Additionally, the number of vertices and edges significantly impacts training efficiency and memory usage; therefore, we employ multi-GPU technology to accelerate the training process. Our code is available at https://github.com/songxf1024/GIMS.

Leveraging Multi-facet Paths for Heterogeneous Graph Representation Learning 2025-08-27
Show

Recent advancements in graph neural networks (GNNs) and heterogeneous GNNs (HGNNs) have advanced node embeddings and relationship learning for various tasks. However, existing methods often rely on domain-specific predefined meta-paths, which are coarse-grained and focus solely on aspects like node type, limiting their ability to capture complex interactions. We introduce MF2Vec, a model that uses multi-faceted (fine-grained) paths instead of predefined meta-paths. MF2Vec extracts paths via random walks and generates multi-faceted vectors, ignoring predefined schemas. This method learns diverse aspects of nodes and their relationships, constructs a homogeneous network, and creates node embeddings for classification, link prediction, and clustering. Extensive experiments show that MF2Vec outperforms existing methods, offering a more flexible and comprehensive framework for analyzing complex networks. The code is available at https://anonymous.4open.science/r/MF2Vec-6ABC.

Improving Efficiency of Sampling-based Motion Planning via Message-Passing Monte Carlo 2025-08-26
Show

Sampling-based motion planning methods, while effective in high-dimensional spaces, often suffer from inefficiencies due to irregular sampling distributions, leading to suboptimal exploration of the configuration space. In this paper, we propose an approach that enhances the efficiency of these methods by utilizing low-discrepancy distributions generated through Message-Passing Monte Carlo (MPMC). MPMC leverages Graph Neural Networks (GNNs) to generate point sets that uniformly cover the space, with uniformity assessed using the the $\cL_p$-discrepancy measure, which quantifies the irregularity of sample distributions. By improving the uniformity of the point sets, our approach significantly reduces computational overhead and the number of samples required for solving motion planning problems. Experimental results demonstrate that our method outperforms traditional sampling techniques in terms of planning efficiency.

Forecasting Multivariate Urban Data via Decomposition and Spatio-Temporal Graph Analysis 2025-08-26
Show

Long-term forecasting of multivariate urban data poses a significant challenge due to the complex spatiotemporal dependencies inherent in such datasets. This paper presents DST, a novel multivariate time-series forecasting model that integrates graph attention and temporal convolution within a Graph Neural Network (GNN) to effectively capture spatial and temporal dependencies, respectively. To enhance model performance, we apply a decomposition-based preprocessing step that isolates trend, seasonal, and residual components of the time series, enabling the learning of distinct graph structures for different time-series components. Extensive experiments on real-world urban datasets, including electricity demand, weather metrics, carbon intensity, and air pollution, demonstrate the effectiveness of DST across a range of forecast horizons, from several days to one month. Specifically, our approach achieves an average improvement of 2.89% to 9.10% in long-term forecasting accuracy over state-of-the-art time-series forecasting models.

Graph Neural Network-Based Topology Optimization for Self-Supporting Structures in Additive Manufacturing 2025-08-26
Show

This paper presents a machine learning-based framework for topology optimization of self-supporting structures, specifically tailored for additive manufacturing (AM). By employing a graph neural network (GNN) that acts as a neural field over the finite element mesh, the framework effectively learns and predicts continuous material distributions. An integrated AM filter ensures printability by eliminating unsupported overhangs, while the optimization process minimizes structural compliance under volume and stress constraints. The stress constraint is enforced using a differentiable p-norm aggregation of von Mises stress, promoting mechanical reliability in the optimized designs. A key advantage of the approach lies in its fully differentiable architecture, which leverages automatic differentiation throughout the optimization loop--eliminating the need for explicit sensitivity derivation for both the filter and the stress constraint. Numerical experiments demonstrate the ability of the framework to generate stress-constrained manufacturable topologies under various loading and boundary conditions, offering a practical pathway toward AM-ready high-performance designs with reduced post-processing requirements.

MCI-GRU: Stock Prediction Model Based on Multi-Head Cross-Attention and Improved GRU 2025-08-26
Show

As financial markets grow increasingly complex in the big data era, accurate stock prediction has become more critical. Traditional time series models, such as GRUs, have been widely used but often struggle to capture the intricate nonlinear dynamics of markets, particularly in the flexible selection and effective utilization of key historical information. Recently, methods like Graph Neural Networks and Reinforcement Learning have shown promise in stock prediction but require high data quality and quantity, and they tend to exhibit instability when dealing with data sparsity and noise. Moreover, the training and inference processes for these models are typically complex and computationally expensive, limiting their broad deployment in practical applications. Existing approaches also generally struggle to capture unobservable latent market states effectively, such as market sentiment and expectations, microstructural factors, and participant behavior patterns, leading to an inadequate understanding of market dynamics and subsequently impact prediction accuracy. To address these challenges, this paper proposes a stock prediction model, MCI-GRU, based on a multi-head cross-attention mechanism and an improved GRU. First, we enhance the GRU model by replacing the reset gate with an attention mechanism, thereby increasing the model's flexibility in selecting and utilizing historical information. Second, we design a multi-head cross-attention mechanism for learning unobservable latent market state representations, which are further enriched through interactions with both temporal features and cross-sectional features. Finally, extensive experiments on four main stock markets show that the proposed method outperforms SOTA techniques across multiple metrics. Additionally, its successful application in real-world fund management operations confirms its effectiveness and practicality.

Automated discovery of finite volume schemes using Graph Neural Networks 2025-08-26
Show

Graph Neural Networks (GNNs) have deeply modified the landscape of numerical simulations by demonstrating strong capabilities in approximating solutions of physical systems. However, their ability to extrapolate beyond their training domain (\textit{e.g.} larger or structurally different graphs) remains uncertain. In this work, we establish that GNNs can serve purposes beyond their traditional role, and be exploited to generate numerical schemes, in conjunction with symbolic regression. First, we show numerically and theoretically that a GNN trained on a dataset consisting solely of two-node graphs can extrapolate a first-order Finite Volume (FV) scheme for the heat equation on out-of-distribution, unstructured meshes. Specifically, if a GNN achieves a loss $\varepsilon$ on such a dataset, it implements the FV scheme with an error of $\mathcal{O}(\varepsilon)$. Using symbolic regression, we show that the network effectively rediscovers the exact analytical formulation of the standard first-order FV scheme. We then extend this approach to an unsupervised context: the GNN recovers the first-order FV scheme using only a residual loss similar to Physics-Informed Neural Networks (PINNs) with no access to ground-truth data. Finally, we push the methodology further by considering higher-order schemes: we train (i) a 2-hop and (ii) a 2-layers GNN using the same PINN loss, that autonomously discover (i) a second-order correction term to the initial scheme using a 2-hop stencil, and (ii) the classic second-order midpoint scheme. These findings follows a recent paradigm in scientific computing: GNNs are not only strong approximators, but can be active contributors to the development of novel numerical methods.

VISION: Robust and Interpretable Code Vulnerability Detection Leveraging Counterfactual Augmentation 2025-08-26
Show

Automated detection of vulnerabilities in source code is an essential cybersecurity challenge, underpinning trust in digital systems and services. Graph Neural Networks (GNNs) have emerged as a promising approach as they can learn structural and logical code relationships in a data-driven manner. However, their performance is severely constrained by training data imbalances and label noise. GNNs often learn 'spurious' correlations from superficial code similarities, producing detectors that fail to generalize well to unseen real-world data. In this work, we propose a unified framework for robust and interpretable vulnerability detection, called VISION, to mitigate spurious correlations by systematically augmenting a counterfactual training dataset. Counterfactuals are samples with minimal semantic modifications but opposite labels. Our framework includes: (i) generating counterfactuals by prompting a Large Language Model (LLM); (ii) targeted GNN training on paired code examples with opposite labels; and (iii) graph-based interpretability to identify the crucial code statements relevant for vulnerability predictions while ignoring spurious ones. We find that VISION reduces spurious learning and enables more robust, generalizable detection, improving overall accuracy (from 51.8% to 97.8%), pairwise contrast accuracy (from 4.5% to 95.8%), and worst-group accuracy (from 0.7% to 85.5%) on the Common Weakness Enumeration (CWE)-20 vulnerability. We further demonstrate gains using proposed metrics: intra-class attribution variance, inter-class attribution distance, and node score dependency. We also release CWE-20-CFA, a benchmark of 27,556 functions (real and counterfactual) from the high-impact CWE-20 category. Finally, VISION advances transparent and trustworthy AI-based cybersecurity systems through interactive visualization for human-in-the-loop analysis.

Generalization, Expressivity, and Universality of Graph Neural Networks on Attributed Graphs 2025-08-26
Show

We analyze the universality and generalization of graph neural networks (GNNs) on attributed graphs, i.e., with node attributes. To this end, we propose pseudometrics over the space of all attributed graphs that describe the fine-grained expressivity of GNNs. Namely, GNNs are both Lipschitz continuous with respect to our pseudometrics and can separate attributed graphs that are distant in the metric. Moreover, we prove that the space of all attributed graphs is relatively compact with respect to our metrics. Based on these properties, we prove a universal approximation theorem for GNNs and generalization bounds for GNNs on any data distribution of attributed graphs. The proposed metrics compute the similarity between the structures of attributed graphs via a hierarchical optimal transport between computation trees. Our work extends and unites previous approaches which either derived theory only for graphs with no attributes, derived compact metrics under which GNNs are continuous but without separation power, or derived metrics under which GNNs are continuous and separate points but the space of graphs is not relatively compact, which prevents universal approximation and generalization analysis.

Predicting Drug-Drug Interactions Using Heterogeneous Graph Neural Networks: HGNN-DDI 2025-08-26
Show

Drug-drug interactions (DDIs) are a major concern in clinical practice, as they can lead to reduced therapeutic efficacy or severe adverse effects. Traditional computational approaches often struggle to capture the complex relationships among drugs, targets, and biological entities. In this work, we propose HGNN-DDI, a heterogeneous graph neural network model designed to predict potential DDIs by integrating multiple drug-related data sources. HGNN-DDI leverages graph representation learning to model heterogeneous biomedical networks, enabling effective information propagation across diverse node and edge types. Experimental results on benchmark DDI datasets demonstrate that HGNN-DDI outperforms state-of-the-art baselines in prediction accuracy and robustness, highlighting its potential to support safer drug development and precision medicine.

12 pa...

12 pages, 5 figures. Published in Applied and Computational Engineering, Vol. 79, pp. 77-89, July 25, 2024. Licensed under CC BY 4.0

Can Large Language Models Act as Ensembler for Multi-GNNs? 2025-08-26
Show

Graph Neural Networks (GNNs) have emerged as powerful models for learning from graph-structured data. However, GNNs lack the inherent semantic understanding capability of rich textual node attributes, limiting their effectiveness in applications. On the other hand, we empirically observe that for existing GNN models, no one can consistently outperforms others across diverse datasets. In this paper, we study whether LLMs can act as an ensembler for multi-GNNs and propose the LensGNN model. The model first aligns multiple GNNs, mapping the representations of different GNNs into the same space. Then, through LoRA fine-tuning, it aligns the space between the GNN and the LLM, injecting graph tokens and textual information into LLMs. This allows LensGNN to ensemble multiple GNNs and take advantage of the strengths of LLM, leading to a deeper understanding of both textual semantic information and graph structural information. The experimental results show that LensGNN outperforms existing models. This research advances text-attributed graph ensemble learning by providing a robust and superior solution for integrating semantic and structural information. We provide our code and data here: https://anonymous.4open.science/r/EnsemGNN-E267/.

A Note on Graphon-Signal Analysis of Graph Neural Networks 2025-08-25
Show

A recent paper, ``A Graphon-Signal Analysis of Graph Neural Networks'', by Levie, analyzed message passing graph neural networks (MPNNs) by embedding the input space of MPNNs, i.e., attributed graphs (graph-signals), to a space of attributed graphons (graphon-signals). Based on extensions of standard results in graphon analysis to graphon-signals, the paper proved a generalization bound and a sampling lemma for MPNNs. However, there are some missing ingredients in that paper, limiting its applicability in practical settings of graph machine learning. In the current paper, we introduce several refinements and extensions to existing results that address these shortcomings. In detail, 1) we extend the main results in the paper to graphon-signals with multidimensional signals (rather than 1D signals), 2) we extend the Lipschitz continuity to MPNNs with readout with respect to cut distance (rather than MPNNs without readout with respect to cut metric), 3) we improve the generalization bound by utilizing robustness-type generalization bounds, and 4) we extend the analysis to non-symmetric graphons and kernels.

Graph Neural Network Based Action Ranking for Planning 2025-08-25
Show

We propose a novel approach to learn relational policies for classical planning based on learning to rank actions. We introduce a new graph representation that explicitly captures action information and propose a Graph Neural Network (GNN) architecture augmented with Gated Recurrent Units (GRUs) to learn action rankings. Unlike value-function based approaches that must learn a globally consistent function, our action ranking method only needs to learn locally consistent ranking, which is more sample-efficient. Our model is trained on data generated from small problem instances that are easily solved by planners and is applied to significantly larger instances where planning is computationally prohibitive. Experimental results across standard planning benchmarks demonstrate that our action-ranking approach not only achieves better generalization to larger problems than those used in training but also outperforms multiple baseline (value function and action ranking) methods in terms of success rate and plan quality.

6 Pag...

6 Pages, 1 figure. Updated acknowledgments

ParticleFormer: A 3D Point Cloud World Model for Multi-Object, Multi-Material Robotic Manipulation 2025-08-25
Show

3D world models (i.e., learning-based 3D dynamics models) offer a promising approach to generalizable robotic manipulation by capturing the underlying physics of environment evolution conditioned on robot actions. However, existing 3D world models are primarily limited to single-material dynamics using a particle-based Graph Neural Network model, and often require time-consuming 3D scene reconstruction to obtain 3D particle tracks for training. In this work, we present ParticleFormer, a Transformer-based point cloud world model trained with a hybrid point cloud reconstruction loss, supervising both global and local dynamics features in multi-material, multi-object robot interactions. ParticleFormer captures fine-grained multi-object interactions between rigid, deformable, and flexible materials, trained directly from real-world robot perception data without an elaborate scene reconstruction. We demonstrate the model's effectiveness both in 3D scene forecasting tasks, and in downstream manipulation tasks using a Model Predictive Control (MPC) policy. In addition, we extend existing dynamics learning benchmarks to include diverse multi-material, multi-object interaction scenarios. We validate our method on six simulation and three real-world experiments, where it consistently outperforms leading baselines by achieving superior dynamics prediction accuracy and less rollout error in downstream visuomotor tasks. Experimental videos are available at https://suninghuang19.github.io/particleformer_page/.

Weisfeiler-Lehman meets Events: An Expressivity Analysis for Continuous-Time Dynamic Graph Neural Networks 2025-08-25
Show

Graph Neural Networks (GNNs) are known to match the distinguishing power of the 1-Weisfeiler-Lehman (1-WL) test, and the resulting partitions coincide with the unfolding tree equivalence classes of graphs. Preserving this equivalence, GNNs can universally approximate any target function on graphs in probability up to any precision. However, these results are limited to attributed discrete-dynamic graphs represented as sequences of connected graph snapshots. Real-world systems, such as communication networks, financial transaction networks, and molecular interactions, evolve asynchronously and may split into disconnected components. In this paper, we extend the theory of attributed discrete-dynamic graphs to attributed continuous-time dynamic graphs with arbitrary connectivity. To this end, we introduce a continuous-time dynamic 1-WL test, prove its equivalence to continuous-time dynamic unfolding trees, and identify a class of continuous-time dynamic GNNs (CGNNs) based on discrete-dynamic GNN architectures that retain both distinguishing power and universal approximation guarantees. Our constructive proofs further yield practical design guidelines, emphasizing a compact and expressive CGNN architecture with piece-wise continuously differentiable temporal functions to process asynchronous, disconnected graphs.

Training Transformers for Mesh-Based Simulations 2025-08-25
Show

Simulating physics using Graph Neural Networks (GNNs) is predominantly driven by message-passing architectures, which face challenges in scaling and efficiency, particularly in handling large, complex meshes. These architectures have inspired numerous enhancements, including multigrid approaches and $K$-hop aggregation (using neighbours of distance $K$), yet they often introduce significant complexity and suffer from limited in-depth investigations. In response to these challenges, we propose a novel Graph Transformer architecture that leverages the adjacency matrix as an attention mask. The proposed approach incorporates innovative augmentations, including Dilated Sliding Windows and Global Attention, to extend receptive fields without sacrificing computational efficiency. Through extensive experimentation, we evaluate model size, adjacency matrix augmentations, positional encoding and $K$-hop configurations using challenging 3D computational fluid dynamics (CFD) datasets. We also train over 60 models to find a scaling law between training FLOPs and parameters. The introduced models demonstrate remarkable scalability, performing on meshes with up to 300k nodes and 3 million edges. Notably, the smallest model achieves parity with MeshGraphNet while being $7\times$ faster and $6\times$ smaller. The largest model surpasses the previous state-of-the-art by $38.8$% on average and outperforms MeshGraphNet by $52$% on the all-rollout RMSE, while having a similar training speed. Code and datasets are available at https://github.com/DonsetPG/graph-physics.

Neural Algorithmic Reasoners informed Large Language Model for Multi-Agent Path Finding 2025-08-25
Show

The development and application of large language models (LLM) have demonstrated that foundational models can be utilized to solve a wide array of tasks. However, their performance in multi-agent path finding (MAPF) tasks has been less than satisfactory, with only a few studies exploring this area. MAPF is a complex problem requiring both planning and multi-agent coordination. To improve the performance of LLM in MAPF tasks, we propose a novel framework, LLM-NAR, which leverages neural algorithmic reasoners (NAR) to inform LLM for MAPF. LLM-NAR consists of three key components: an LLM for MAPF, a pre-trained graph neural network-based NAR, and a cross-attention mechanism. This is the first work to propose using a neural algorithmic reasoner to integrate GNNs with the map information for MAPF, thereby guiding LLM to achieve superior performance. LLM-NAR can be easily adapted to various LLM models. Both simulation and real-world experiments demonstrate that our method significantly outperforms existing LLM-based approaches in solving MAPF problems.

Accep...

Accepted by IJCNN 2025

Geometry-Aware Spiking Graph Neural Network 2025-08-25
Show

Graph Neural Networks (GNNs) have demonstrated impressive capabilities in modeling graph-structured data, while Spiking Neural Networks (SNNs) offer high energy efficiency through sparse, event-driven computation. However, existing spiking GNNs predominantly operate in Euclidean space and rely on fixed geometric assumptions, limiting their capacity to model complex graph structures such as hierarchies and cycles. To overcome these limitations, we propose \method{}, a novel Geometry-Aware Spiking Graph Neural Network that unifies spike-based neural dynamics with adaptive representation learning on Riemannian manifolds. \method{} features three key components: a Riemannian Embedding Layer that projects node features into a pool of constant-curvature manifolds, capturing non-Euclidean structures; a Manifold Spiking Layer that models membrane potential evolution and spiking behavior in curved spaces via geometry-consistent neighbor aggregation and curvature-based attention; and a Manifold Learning Objective that enables instance-wise geometry adaptation through jointly optimized classification and link prediction losses defined over geodesic distances. All modules are trained using Riemannian SGD, eliminating the need for backpropagation through time. Extensive experiments on multiple benchmarks show that GSG achieves superior accuracy, robustness, and energy efficiency compared to both Euclidean SNNs and manifold-based GNNs, establishing a new paradigm for curvature-aware, energy-efficient graph learning.

Bridging Graph and State-Space Modeling for Intensive Care Unit Length of Stay Prediction 2025-08-24
Show

Predicting a patient's length of stay (LOS) in the intensive care unit (ICU) is a critical task for hospital resource management, yet remains challenging due to the heterogeneous and irregularly sampled nature of electronic health records (EHRs). In this work, we propose S$^2$G-Net, a novel neural architecture that unifies state-space sequence modeling with multi-view Graph Neural Networks (GNNs) for ICU LOS prediction. The temporal path employs Mamba state-space models (SSMs) to capture patient trajectories, while the graph path leverages an optimized GraphGPS backbone, designed to integrate heterogeneous patient similarity graphs derived from diagnostic, administrative, and semantic features. Experiments on the large-scale MIMIC-IV cohort dataset show that S$^2$G-Net consistently outperforms sequence models (BiLSTM, Mamba, Transformer), graph models (classic GNNs, GraphGPS), and hybrid approaches across all primary metrics. Extensive ablation studies and interpretability analyses highlight the complementary contributions of each component of our architecture and underscore the importance of principled graph construction. These results demonstrate that S$^2$G-Net provides an effective and scalable solution for ICU LOS prediction with multi-modal clinical data.

GraphMMP: A Graph Neural Network Model with Mutual Information and Global Fusion for Multimodal Medical Prognosis 2025-08-24
Show

In the field of multimodal medical data analysis, leveraging diverse types of data and understanding their hidden relationships continues to be a research focus. The main challenges lie in effectively modeling the complex interactions between heterogeneous data modalities with distinct characteristics while capturing both local and global dependencies across modalities. To address these challenges, this paper presents a two-stage multimodal prognosis model, GraphMMP, which is based on graph neural networks. The proposed model constructs feature graphs using mutual information and features a global fusion module built on Mamba, which significantly boosts prognosis performance. Empirical results show that GraphMMP surpasses existing methods on datasets related to liver prognosis and the METABRIC study, demonstrating its effectiveness in multimodal medical prognosis tasks.

Multi-Level Fusion Graph Neural Network for Molecule Property Prediction 2025-08-24
Show

Accurate prediction of molecular properties is essential in drug discovery and related fields. However, existing graph neural networks (GNNs) often struggle to simultaneously capture both local and global molecular structures. In this work, we propose a Multi-Level Fusion Graph Neural Network (MLFGNN) that integrates Graph Attention Networks and a novel Graph Transformer to jointly model local and global dependencies. In addition, we incorporate molecular fingerprints as a complementary modality and introduce a mechanism of interaction between attention to adaptively fuse information across representations. Extensive experiments on multiple benchmark datasets demonstrate that MLFGNN consistently outperforms state-of-the-art methods in both classification and regression tasks. Interpretability analysis further reveals that the model effectively captures task-relevant chemical patterns, supporting the usefulness of multi-level and multi-modal fusion in molecular representation learning.

42 pa...

42 pages, 11 figures, 6 tables

Graph-oriented Instruction Tuning of Large Language Models for Generic Graph Mining 2025-08-24
Show

Graphs with abundant attributes are essential in modeling interconnected entities and enhancing predictions across various real-world applications. Traditional Graph Neural Networks (GNNs) often require re-training for different graph tasks and datasets. Although the emergence of Large Language Models (LLMs) has introduced new paradigms in natural language processing, their potential for generic graph mining, training a single model to simultaneously handle diverse tasks and datasets, remains under-explored. To this end, our novel framework MuseGraph, seamlessly integrates the strengths of GNNs and LLMs into one foundation model for graph mining across tasks and datasets. This framework first features a compact graph description to encapsulate key graph information within language token limitations. Then, we propose a diverse instruction generation mechanism with Chain-of-Thought (CoT)-based instruction packages to distill the reasoning capabilities from advanced LLMs like GPT-4. Finally, we design a graph-aware instruction tuning strategy to facilitate mutual enhancement across multiple tasks and datasets while preventing catastrophic forgetting of LLMs' generative abilities. Our experimental results demonstrate significant improvements in five graph tasks and ten datasets, showcasing the potential of our MuseGraph in enhancing the accuracy of graph-oriented downstream tasks while improving the generation abilities of LLMs.

Accep...

Accepted by TPAMI 2025

HMAE: Self-Supervised Few-Shot Learning for Quantum Spin Systems 2025-08-24
Show

Quantum machine learning for spin and molecular systems faces critical challenges of scarce labeled data and computationally expensive simulations. To address these limitations, we introduce Hamiltonian-Masked Autoencoding (HMAE), a novel self-supervised framework that pre-trains transformers on unlabeled quantum Hamiltonians, enabling efficient few-shot transfer learning. Unlike random masking approaches, HMAE employs a physics-informed strategy based on quantum information theory to selectively mask Hamiltonian terms based on their physical significance. Experiments on 12,500 quantum Hamiltonians (60% real-world, 40% synthetic) demonstrate that HMAE achieves 85.3% $\pm$ 1.5% accuracy in phase classification and 0.15 $\pm$ 0.02 eV MAE in ground state energy prediction with merely 10 labeled examples - a statistically significant improvement (p < 0.01) over classical graph neural networks (78.1% $\pm$ 2.1%) and quantum neural networks (76.8% $\pm$ 2.3%). Our method's primary advantage is exceptional sample efficiency - reducing required labeled examples by 3-5x compared to baseline methods - though we emphasize that ground truth values for fine-tuning and evaluation still require exact diagonalization or tensor networks. We explicitly acknowledge that our current approach is limited to small quantum systems (specifically limited to 12 qubits during training, with limited extension to 16-20 qubits in testing) and that, while promising within this regime, this size restriction prevents immediate application to larger systems of practical interest in materials science and quantum chemistry.

Equivariant Spherical Transformer for Efficient Molecular Modeling 2025-08-24
Show

SE(3)-equivariant Graph Neural Networks (GNNs) have significantly advanced molecular system modeling by employing group representations. However, their message passing processes, which rely on tensor product-based convolutions, are limited by insufficient non-linearity and incomplete group representations, thereby restricting expressiveness. To overcome these limitations, we introduce the Equivariant Spherical Transformer (EST), a novel framework that leverages a Transformer structure within the spatial domain of group representations after Fourier transform. We theoretically and empirically demonstrate that EST can encompass the function space of tensor products while achieving superior expressiveness. Furthermore, EST's equivariant inductive bias is guaranteed through a uniform sampling strategy for the Fourier transform. Our experiments demonstrate state-of-the-art performance by EST on various molecular benchmarks, including OC20 and QM9.

24 pages, 3 figures
Scaling Graph Transformers: A Comparative Study of Sparse and Dense Attention 2025-08-24
Show

Graphs have become a central representation in machine learning for capturing relational and structured data across various domains. Traditional graph neural networks often struggle to capture long-range dependencies between nodes due to their local structure. Graph transformers overcome this by using attention mechanisms that allow nodes to exchange information globally. However, there are two types of attention in graph transformers: dense and sparse. In this paper, we compare these two attention mechanisms, analyze their trade-offs, and highlight when to use each. We also outline current challenges and problems in designing attention for graph transformers.

Two Birds with One Stone: Enhancing Uncertainty Quantification and Interpretability with Graph Functional Neural Process 2025-08-23
Show

Graph neural networks (GNNs) are powerful tools on graph data. However, their predictions are mis-calibrated and lack interpretability, limiting their adoption in critical applications. To address this issue, we propose a new uncertainty-aware and interpretable graph classification model that combines graph functional neural process and graph generative model. The core of our method is to assume a set of latent rationales which can be mapped to a probabilistic embedding space; the predictive distribution of the classifier is conditioned on such rationale embeddings by learning a stochastic correlation matrix. The graph generator serves to decode the graph structure of the rationales from the embedding space for model interpretability. For efficient model training, we adopt an alternating optimization procedure which mimics the well known Expectation-Maximization (EM) algorithm. The proposed method is general and can be applied to any existing GNN architecture. Extensive experiments on five graph classification datasets demonstrate that our framework outperforms state-of-the-art methods in both uncertainty quantification and GNN interpretability. We also conduct case studies to show that the decoded rationale structure can provide meaningful explanations.

AISTATS'25
Score Matching on Large Geometric Graphs for Cosmology Generation 2025-08-23
Show

Generative models are a promising tool to produce cosmological simulations but face significant challenges in scalability, physical consistency, and adherence to domain symmetries, limiting their utility as alternatives to $N$-body simulations. To address these limitations, we introduce a score-based generative model with an equivariant graph neural network that simulates gravitational clustering of galaxies across cosmologies starting from an informed prior, respects periodic boundaries, and scales to full galaxy counts in simulations. A novel topology-aware noise schedule, crucial for large geometric graphs, is introduced. The proposed equivariant score-based model successfully generates full-scale cosmological point clouds of up to 600,000 halos, respects periodicity and a uniform prior, and outperforms existing diffusion models in capturing clustering statistics while offering significant computational advantages. This work advances cosmology by introducing a generative model designed to closely resemble the underlying gravitational clustering of structure formation, moving closer to physically realistic and efficient simulators for the evolution of large-scale structures in the universe.

Quadratic Binary Optimization with Graph Neural Networks 2025-08-23
Show

We investigate a link between Graph Neural Networks (GNNs) and Quadratic Unconstrained Binary Optimization (QUBO) problems, laying the groundwork for GNNs to approximate solutions for these computationally challenging tasks. By analyzing the sensitivity of QUBO formulations, we frame the solution of QUBO problems as a heterophilic node classification task. We then propose QUBO-GNN, an architecture that integrates graph representation learning techniques with QUBO-aware features to approximate solutions efficiently. Additionally, we introduce a self-supervised data generation mechanism to enable efficient and scalable training data acquisition even for large-scale QUBO instances. Experimental evaluations of QUBO-GNN across diverse QUBO problem sizes demonstrate its superior performance compared to exhaustive search and heuristic methods. Finally, we discuss open challenges in the emerging intersection between QUBO optimization and GNN-based learning.

ECAI 2025
Physics-Inspired Spatial Temporal Graph Neural Networks for Predicting Industrial Chain Resilience 2025-08-22
Show

Industrial chain plays an increasingly important role in the sustainable development of national economy. However, as a typical complex network, data-driven deep learning is still in its infancy in describing and analyzing the resilience of complex networks, and its core is the lack of a theoretical framework to describe the system dynamics. In this paper, we propose a physically informative neural symbolic approach to describe the evolutionary dynamics of complex networks for resilient prediction. The core idea is to learn the dynamics of the activity state of physical entities and integrate it into the multi-layer spatiotemporal co-evolution network, and use the physical information method to realize the joint learning of physical symbol dynamics and spatiotemporal co-evolution topology, so as to predict the industrial chain resilience. The experimental results show that the model can obtain better results and predict the elasticity of the industry chain more accurately and effectively, which has certain practical significance for the development of the industry.

Understanding and Tackling Over-Dilution in Graph Neural Networks 2025-08-22
Show

Message Passing Neural Networks (MPNNs) hold a key position in machine learning on graphs, but they struggle with unintended behaviors, such as over-smoothing and over-squashing, due to irregular data structures. The observation and formulation of these limitations have become foundational in constructing more informative graph representations. In this paper, we delve into the limitations of MPNNs, focusing on aspects that have previously been overlooked. Our observations reveal that even within a single layer, the information specific to an individual node can become significantly diluted. To delve into this phenomenon in depth, we present the concept of Over-dilution and formulate it with two dilution factors: intra-node dilution for attribute-level and inter-node dilution for node-level representations. We also introduce a transformer-based solution that alleviates over-dilution and complements existing node embedding methods like MPNNs. Our findings provide new insights and contribute to the development of informative representations. The implementation and supplementary materials are publicly available at https://github.com/LeeJunHyun/NATR.

Exten...

Extended version of KDD '25 paper. 22 pages including appendix. Conference version: KDD '25 (Toronto, Aug 3-7, 2025), pp. 1253-1261. Code: https://github.com/LeeJunHyun/NATR

Hyperbolic Graph Neural Networks: A Review of Methods and Applications 2025-08-22
Show

Graph representation learning in Euclidean space, despite its widespread adoption and proven utility in many domains, often struggles to effectively capture the inherent hierarchical and complex relational structures prevalent in real-world data, particularly for datasets exhibiting a highly non-Euclidean latent anatomy or power-law distributions. Hyperbolic geometry, with its constant negative curvature and exponential growth property, naturally accommodates such structures, offering a promising alternative for learning rich graph representations. This survey paper provides a comprehensive review of the rapidly evolving field of Hyperbolic Graph Learning (HGL). We systematically categorize and analyze existing methods broadly dividing them into (1) hyperbolic graph embedding-based techniques, (2) graph neural network-based hyperbolic models, and (3) emerging paradigms. Beyond methodologies, we extensively discuss diverse applications of HGL across multiple domains, including recommender systems, knowledge graphs, bioinformatics, and other relevant scenarios, demonstrating the broad applicability and effectiveness of hyperbolic geometry in real-world graph learning tasks. Most importantly, we identify several key challenges that serve as directions for advancing HGL, including handling complex data structures, developing geometry-aware learning objectives, ensuring trustworthy and scalable implementations, and integrating with foundation models, e.g., large language models. We highlight promising research opportunities in this exciting interdisciplinary area. A comprehensive repository can be found at https://github.com/digailab/awesome-hyperbolic-graph-learning.

The l...

The latest draft was circulated under the title "Hyperbolic Graph Learning: A Comprehensive Review." The present arXiv version retains the original title, "Hyperbolic Graph Neural Networks: A Review of Methods and Applications," for consistency, while incorporating substantial revisions and extensions

Deep spatio-temporal point processes: Advances and new directions 2025-08-22
Show

Spatio-temporal point processes (STPPs) model discrete events distributed in time and space, with important applications in areas such as criminology, seismology, epidemiology, and social networks. Traditional models often rely on parametric kernels, limiting their ability to capture heterogeneous, nonstationary dynamics. Recent innovations integrate deep neural architectures -- either by modeling the conditional intensity function directly or by learning flexible, data-driven influence kernels, substantially broadening their expressive power. This article reviews the development of the deep influence kernel approach, which enjoys statistical explainability, since the influence kernel remains in the model to capture the spatiotemporal propagation of event influence and its impact on future events, while also possessing strong expressive power, thereby benefiting from both worlds. We explain the main components in developing deep kernel point processes, leveraging tools such as functional basis decomposition and graph neural networks to encode complex spatial or network structures, as well as estimation using both likelihood-based and likelihood-free methods, and address computational scalability for large-scale data. We also discuss the theoretical foundation of kernel identifiability. Simulated and real-data examples highlight applications to crime analysis, earthquake aftershock prediction, and sepsis prediction modeling, and we conclude by discussing promising directions for the field.

Annua...

Annual Review of Statistics and Its Application, 2025

DR-CircuitGNN: Training Acceleration of Heterogeneous Circuit Graph Neural Network on GPUs 2025-08-22
Show

The increasing scale and complexity of integrated circuit design have led to increased challenges in Electronic Design Automation (EDA). Graph Neural Networks (GNNs) have emerged as a promising approach to assist EDA design as circuits can be naturally represented as graphs. While GNNs offer a foundation for circuit analysis, they often fail to capture the full complexity of EDA designs. Heterogeneous Graph Neural Networks (HGNNs) can better interpret EDA circuit graphs as they capture both topological relationships and geometric features. However, the improved representation capability comes at the cost of even higher computational complexity and processing cost due to their serial module-wise message-passing scheme, creating a significant performance bottleneck. In this paper, we propose DR-CircuitGNN, a fast GPU kernel design by leveraging row-wise sparsity-aware Dynamic-ReLU and optimizing SpMM kernels during heterogeneous message-passing to accelerate HGNNs training on EDA-related circuit graph datasets. To further enhance performance, we propose a parallel optimization strategy that maximizes CPU-GPU concurrency by concurrently processing independent subgraphs using multi-threaded CPU initialization and GPU kernel execution via multiple cudaStreams. Our experiments show that on three representative CircuitNet designs (small, medium, large), the proposed method can achieve up to 3.51x and 4.09x speedup compared to the SOTA for forward and backward propagation, respectively. On full-size CircuitNet and sampled Mini-CircuitNet, our parallel design enables up to 2.71x speed up over the official DGL implementation cuSPARSE with negligible impact on correlation scores and error rates.

How do Probabilistic Graphical Models and Graph Neural Networks Look at Network Data? 2025-08-22
Show

Graphs are a powerful data structure for representing relational data and are widely used to describe complex real-world systems. Probabilistic Graphical Models (PGMs) and Graph Neural Networks (GNNs) can both leverage graph-structured data, but their inherent functioning is different. The question is how do they compare in capturing the information contained in networked datasets? We address this objective by solving a link prediction task and we conduct three main experiments, on both synthetic and real networks: one focuses on how PGMs and GNNs handle input features, while the other two investigate their robustness to noisy features and increasing heterophily of the graph. PGMs do not necessarily require features on nodes, while GNNs cannot exploit the network edges alone, and the choice of input features matters. We find that GNNs are outperformed by PGMs when input features are low-dimensional or noisy, mimicking many real scenarios where node attributes might be scalar or noisy. Then, we find that PGMs are more robust than GNNs when the heterophily of the graph is increased. Finally, to assess performance beyond prediction tasks, we also compare the two frameworks in terms of their computational complexity and interpretability.

A Node-Aware Dynamic Quantization Approach for Graph Collaborative Filtering 2025-08-22
Show

In the realm of collaborative filtering recommendation systems, Graph Neural Networks (GNNs) have demonstrated remarkable performance but face significant challenges in deployment on resource-constrained edge devices due to their high embedding parameter requirements and computational costs. Using common quantization method directly on node embeddings may overlooks their graph based structure, causing error accumulation during message passing and degrading the quality of quantized embeddings.To address this, we propose Graph based Node-Aware Dynamic Quantization training for collaborative filtering (GNAQ), a novel quantization approach that leverages graph structural information to enhance the balance between efficiency and accuracy of GNNs for Top-K recommendation. GNAQ introduces a node-aware dynamic quantization strategy that adapts quantization scales to individual node embeddings by incorporating graph interaction relationships. Specifically, it initializes quantization intervals based on node-wise feature distributions and dynamically refines them through message passing in GNN layers. This approach mitigates information loss caused by fixed quantization scales and captures hierarchical semantic features in user-item interaction graphs. Additionally, GNAQ employs graph relation-aware gradient estimation to replace traditional straight-through estimators, ensuring more accurate gradient propagation during training. Extensive experiments on four real-world datasets demonstrate that GNAQ outperforms state-of-the-art quantization methods, including BiGeaR and N2UQ, by achieving average improvement in 27.8% Recall@10 and 17.6% NDCG@10 under 2-bit quantization. In particular, GNAQ is capable of maintaining the performance of full-precision models while reducing their model sizes by 8 to 12 times; in addition, the training time is twice as fast compared to quantization baseline methods.

NeuroKoop: Neural Koopman Fusion of Structural-Functional Connectomes for Identifying Prenatal Drug Exposure in Adolescents 2025-08-22
Show

Understanding how prenatal exposure to psychoactive substances such as cannabis shapes adolescent brain organization remains a critical challenge, complicated by the complexity of multimodal neuroimaging data and the limitations of conventional analytic methods. Existing approaches often fail to fully capture the complementary features embedded within structural and functional connectomes, constraining both biological insight and predictive performance. To address this, we introduced NeuroKoop, a novel graph neural network-based framework that integrates structural and functional brain networks utilizing neural Koopman operator-driven latent space fusion. By leveraging Koopman theory, NeuroKoop unifies node embeddings derived from source-based morphometry (SBM) and functional network connectivity (FNC) based brain graphs, resulting in enhanced representation learning and more robust classification of prenatal drug exposure (PDE) status. Applied to a large adolescent cohort from the ABCD dataset, NeuroKoop outperformed relevant baselines and revealed salient structural-functional connections, advancing our understanding of the neurodevelopmental impact of PDE.

Prepr...

Preprint version of the paper accepted to IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI'25), 2025. This is the author's original manuscript (preprint). The final published version will appear in IEEE Xplore

Fast and Accurate RFIC Performance Prediction via Pin Level Graph Neural Networks and Probabilistic Flow 2025-08-22
Show

Accurately predicting the performance of active radio frequency (RF) circuits is essential for modern wireless systems but remains challenging due to highly nonlinear, layout-sensitive behavior and the high computational cost of traditional simulation tools. Existing machine learning (ML) surrogates often require large datasets to generalize across various topologies or to accurately model skewed and multi-modal performance metrics. In this work, a lightweight, data-efficient, and topology-aware graph neural network (GNN) model is proposed for predicting key performance metrics of multiple topologies of active RF circuits such as low noise amplifiers (LNAs), mixers, voltage-controlled oscillators (VCOs), and PAs. To capture transistor-level symmetry and preserve fine-grained connectivity details, circuits are modeled at the device-terminal level, enabling scalable message passing while reducing data requirements. Masked autoregressive flow (MAF) output heads are incorporated to improve robustness in modeling complex target distributions. Experiments on datasets demonstrate high prediction accuracy, with symmetric mean absolute percentage error (sMAPE) and mean relative error (MRE) averaging 2.40% and 2.91%, respectively. Owing to the pin-level conversion of circuit to graph and ML architecture robust to modeling complex densities of RF metrics, the MRE is improved by 3.14x while using 2.24x fewer training samples compared to prior work, demonstrating the method's effectiveness for rapid and accurate RF circuit design automation.

This ...

This work has been submitted to the IEEE for possible publication

Set Transformer Architectures and Synthetic Data Generation for Flow-Guided Nanoscale Localization 2025-08-22
Show

Flow-guided Localization (FGL) enables the identification of spatial regions within the human body that contain an event of diagnostic interest. FGL does that by leveraging the passive movement of energy-constrained nanodevices circulating through the bloodstream. Existing FGL solutions rely on graph models with fixed topologies or handcrafted features, which limit their adaptability to anatomical variability and hinder scalability. In this work, we explore the use of Set Transformer architectures to address these limitations. Our formulation treats nanodevices' circulation time reports as unordered sets, enabling permutation-invariant, variable-length input processing without relying on spatial priors. To improve robustness under data scarcity and class imbalance, we integrate synthetic data generation via deep generative models, including CGAN, WGAN, WGAN-GP, and CVAE. These models are trained to replicate realistic circulation time distributions conditioned on vascular region labels, and are used to augment the training data. Our results show that the Set Transformer achieves comparable classification accuracy compared to Graph Neural Networks (GNN) baselines, while simultaneously providing by-design improved generalization to anatomical variability. The findings highlight the potential of permutation-invariant models and synthetic augmentation for robust and scalable nanoscale localization.

6 pag...

6 pages, 4 figures, 4 tables, 26 references, accepted at ACM NanoCom'25

Joint Cache Placement and Routing in Satellite-Terrestrial Edge Computing Network: A GNN-Enabled DRL Approach 2025-08-22
Show

In this letter, we investigate the problem of joint content caching and routing in satellite-terrestrial edge computing networks (STECNs) to improve caching service for geographically distributed users. To handle the challenges arising from dynamic low Earth orbit (LEO) satellite topologies and heterogeneous content demands, we propose a learning-based framework that integrates graph neural networks (GNNs) with deep reinforcement learning (DRL). The satellite network is represented as a dynamic graph, where GNNs are embedded within the DRL agent to capture spatial and topological dependencies and support routing-aware decision-making. The caching strategy is optimized by formulating the problem as a Markov decision process (MDP) and applying soft actor-critic (SAC) algorithm. Simulation results demonstrate that our approach significantly improves the delivery success rate and reduces communication traffic cost.

5 pages, 6 figures
Robust Graph Contrastive Learning with Information Restoration 2025-08-22
Show

The graph contrastive learning (GCL) framework has gained remarkable achievements in graph representation learning. However, similar to graph neural networks (GNNs), GCL models are susceptible to graph structural attacks. As an unsupervised method, GCL faces greater challenges in defending against adversarial attacks. Furthermore, there has been limited research on enhancing the robustness of GCL. To thoroughly explore the failure of GCL on the poisoned graphs, we investigate the detrimental effects of graph structural attacks against the GCL framework. We discover that, in addition to the conventional observation that graph structural attacks tend to connect dissimilar node pairs, these attacks also diminish the mutual information between the graph and its representations from an information-theoretical perspective, which is the cornerstone of the high-quality node embeddings for GCL. Motivated by this theoretical insight, we propose a robust graph contrastive learning framework with a learnable sanitation view that endeavors to sanitize the augmented graphs by restoring the diminished mutual information caused by the structural attacks. Additionally, we design a fully unsupervised tuning strategy to tune the hyperparameters without accessing the label information, which strictly coincides with the defender's knowledge. Extensive experiments demonstrate the effectiveness and efficiency of our proposed method compared to competitive baselines.

FIRE-GNN: Force-informed, Relaxed Equivariance Graph Neural Network for Rapid and Accurate Prediction of Surface Properties 2025-08-22
Show

The work function and cleavage energy of a surface are critical properties that determine the viability of materials in electronic emission applications, semiconductor devices, and heterogeneous catalysis. While first principles calculations are accurate in predicting these properties, their computational expense combined with the vast search space of surfaces make a comprehensive screening approach with density functional theory (DFT) infeasible. Here, we introduce FIRE-GNN (Force-Informed, Relaxed Equivariance Graph Neural Network), which integrates surface-normal symmetry breaking and machine learning interatomic potential (MLIP)-derived force information, achieving a twofold reduction in mean absolute error (down to 0.065 eV) over the previous state-of-the-art for work function prediction. We additionally benchmark recent invariant and equivariant architectures, analyze the impact of symmetry breaking, and evaluate out-of-distribution generalization, demonstrating that FIRE-GNN consistently outperforms competing models for work function predictions. This model enables accurate and rapid predictions of the work function and cleavage energy across a vast chemical space and facilitates the discovery of materials with tuned surface properties

HePGA: A Heterogeneous Processing-in-Memory based GNN Training Accelerator 2025-08-22
Show

Processing-In-Memory (PIM) architectures offer a promising approach to accelerate Graph Neural Network (GNN) training and inference. However, various PIM devices such as ReRAM, FeFET, PCM, MRAM, and SRAM exist, with each device offering unique trade-offs in terms of power, latency, area, and non-idealities. A heterogeneous manycore architecture enabled by 3D integration can combine multiple PIM devices on a single platform, to enable energy-efficient and high-performance GNN training. In this work, we propose a 3D heterogeneous PIM-based accelerator for GNN training referred to as HePGA. We leverage the unique characteristics of GNN layers and associated computing kernels to optimize their mapping on to different PIM devices as well as planar tiers. Our experimental analysis shows that HePGA outperforms existing PIM-based architectures by up to 3.8x and 6.8x in energy-efficiency (TOPS/W) and compute efficiency (TOPS/mm2) respectively, without sacrificing the GNN prediction accuracy. Finally, we demonstrate the applicability of HePGA to accelerate inferencing of emerging transformer models.

Tree-like Pairwise Interaction Networks 2025-08-21
Show

Modeling feature interactions in tabular data remains a key challenge in predictive modeling, for example, as used for insurance pricing. This paper proposes the Tree-like Pairwise Interaction Network (PIN), a novel neural network architecture that explicitly captures pairwise feature interactions through a shared feed-forward neural network architecture that mimics the structure of decision trees. PIN enables intrinsic interpretability by design, allowing for direct inspection of interaction effects. Moreover, it allows for efficient SHapley's Additive exPlanation (SHAP) computations because it only involves pairwise interactions. We highlight connections between PIN and established models such as GA2Ms, gradient boosting machines, and graph neural networks. Empirical results on the popular French motor insurance dataset show that PIN outperforms both traditional and modern neural networks benchmarks in predictive accuracy, while also providing insight into how features interact with each another and how they contribute to the predictions.

On the Consistency of GNN Explanations for Malware Detection 2025-08-21
Show

Control Flow Graphs (CFGs) are critical for analyzing program execution and characterizing malware behavior. With the growing adoption of Graph Neural Networks (GNNs), CFG-based representations have proven highly effective for malware detection. This study proposes a novel framework that dynamically constructs CFGs and embeds node features using a hybrid approach combining rule-based encoding and autoencoder-based embedding. A GNN-based classifier is then constructed to detect malicious behavior from the resulting graph representations. To improve model interpretability, we apply state-of-the-art explainability techniques, including GNNExplainer, PGExplainer, and CaptumExplainer, the latter is utilized three attribution methods: Integrated Gradients, Guided Backpropagation, and Saliency. In addition, we introduce a novel aggregation method, called RankFusion, that integrates the outputs of the top-performing explainers to enhance the explanation quality. We also evaluate explanations using two subgraph extraction strategies, including the proposed Greedy Edge-wise Composition (GEC) method for improved structural coherence. A comprehensive evaluation using accuracy, fidelity, and consistency metrics demonstrates the effectiveness of the proposed framework in terms of accurate identification of malware samples and generating reliable and interpretable explanations.

Let's Grow an Unbiased Community: Guiding the Fairness of Graphs via New Links 2025-08-21
Show

Graph Neural Networks (GNNs) have achieved remarkable success across diverse applications. However, due to the biases in the graph structures, graph neural networks face significant challenges in fairness. Although the original user graph structure is generally biased, it is promising to guide these existing structures toward unbiased ones by introducing new links. The fairness guidance via new links could foster unbiased communities, thereby enhancing fairness in downstream applications. To address this issue, we propose a novel framework named FairGuide. Specifically, to ensure fairness in downstream tasks trained on fairness-guided graphs, we introduce a differentiable community detection task as a pseudo downstream task. Our theoretical analysis further demonstrates that optimizing fairness within this pseudo task effectively enhances structural fairness, promoting fairness generalization across diverse downstream applications. Moreover, FairGuide employs an effective strategy which leverages meta-gradients derived from the fairness-guidance objective to identify new links that significantly enhance structural fairness. Extensive experimental results demonstrate the effectiveness and generalizability of our proposed method across a variety of graph-based fairness tasks.

JEDI-linear: Fast and Efficient Graph Neural Networks for Jet Tagging on FPGAs 2025-08-21
Show

Graph Neural Networks (GNNs), particularly Interaction Networks (INs), have shown exceptional performance for jet tagging at the CERN High-Luminosity Large Hadron Collider (HL-LHC). However, their computational complexity and irregular memory access patterns pose significant challenges for deployment on FPGAs in hardware trigger systems, where strict latency and resource constraints apply. In this work, we propose JEDI-linear, a novel GNN architecture with linear computational complexity that eliminates explicit pairwise interactions by leveraging shared transformations and global aggregation. To further enhance hardware efficiency, we introduce fine-grained quantization-aware training with per-parameter bitwidth optimization and employ multiplier-free multiply-accumulate operations via distributed arithmetic. Evaluation results show that our FPGA-based JEDI-linear achieves 3.7 to 11.5 times lower latency, up to 150 times lower initiation interval, and up to 6.2 times lower LUT usage compared to state-of-the-art designs while also delivering higher model accuracy and eliminating the need for DSP blocks entirely. In contrast, state-of-the-art solutions consume over 8,700 DSPs. This is the first interaction-based GNN to achieve less than 60~ns latency and currently meets the requirements for use in the HL-LHC CMS Level-1 trigger system. This work advances the next-generation trigger systems by enabling accurate, scalable, and resource-efficient GNN inference in real-time environments. Our open-sourced templates will further support reproducibility and broader adoption across scientific applications.

10 pages, 9 figures
STAGNet: A Spatio-Temporal Graph and LSTM Framework for Accident Anticipation 2025-08-21
Show

Accident prediction and timely warnings play a key role in improving road safety by reducing the risk of injury to road users and minimizing property damage. Advanced Driver Assistance Systems (ADAS) are designed to support human drivers and are especially useful when they can anticipate potential accidents before they happen. While many existing systems depend on a range of sensors such as LiDAR, radar, and GPS, relying solely on dash-cam video input presents a more challenging but a more cost-effective and easily deployable solution. In this work, we incorporate better spatio-temporal features and aggregate them through a recurrent network to improve upon state-of-the-art graph neural networks for predicting accidents from dash-cam videos. Experiments using three publicly available datasets show that our proposed STAGNet model achieves higher average precision and mean time-to-collision values than previous methods, both when cross-validated on a given dataset and when trained and tested on different datasets.

Fragment-Wise Interpretability in Graph Neural Networks via Molecule Decomposition and Contribution Analysis 2025-08-20
Show

Graph neural networks have demonstrated remarkable success in predicting molecular properties by leveraging the rich structural information encoded in molecular graphs. However, their black-box nature reduces interpretability, which limits trust in their predictions for important applications such as drug discovery and materials design. Furthermore, existing explanation techniques often fail to reliably quantify the contribution of individual atoms or substructures due to the entangled message-passing dynamics. We introduce SEAL (Substructure Explanation via Attribution Learning), a new interpretable graph neural network that attributes model predictions to meaningful molecular subgraphs. SEAL decomposes input graphs into chemically relevant fragments and estimates their causal influence on the output. The strong alignment between fragment contributions and model predictions is achieved by explicitly reducing inter-fragment message passing in our proposed model architecture. Extensive evaluations on synthetic benchmarks and real-world molecular datasets demonstrate that SEAL outperforms other explainability methods in both quantitative attribution metrics and human-aligned interpretability. A user study further confirms that SEAL provides more intuitive and trustworthy explanations to domain experts. By bridging the gap between predictive performance and interpretability, SEAL offers a promising direction for more transparent and actionable molecular modeling.

Fast Graph Neural Network for Image Classification 2025-08-20
Show

The rapid progress in image classification has been largely driven by the adoption of Graph Convolutional Networks (GCNs), which offer a robust framework for handling complex data structures. This study introduces a novel approach that integrates GCNs with Voronoi diagrams to enhance image classification by leveraging their ability to effectively model relational data. Unlike conventional convolutional neural networks (CNNs), our method represents images as graphs, where pixels or regions function as vertices. These graphs are then refined using corresponding Delaunay triangulations, optimizing their representation. The proposed model achieves significant improvements in both preprocessing efficiency and classification accuracy across various benchmark datasets, surpassing state-of-the-art approaches, particularly in challenging scenarios involving intricate scenes and fine-grained categories. Experimental results, validated through cross-validation, underscore the effectiveness of combining GCNs with Voronoi diagrams for advancing image classification. This research not only presents a novel perspective on image classification but also expands the potential applications of graph-based learning paradigms in computer vision and unstructured data analysis.

12 pa...

12 pages, proceeding into CanadianAI 2025

Improving Fairness in Graph Neural Networks via Counterfactual Debiasing 2025-08-20
Show

Graph Neural Networks (GNNs) have been successful in modeling graph-structured data. However, similar to other machine learning models, GNNs can exhibit bias in predictions based on attributes like race and gender. Moreover, bias in GNNs can be exacerbated by the graph structure and message-passing mechanisms. Recent cutting-edge methods propose mitigating bias by filtering out sensitive information from input or representations, like edge dropping or feature masking. Yet, we argue that such strategies may unintentionally eliminate non-sensitive features, leading to a compromised balance between predictive accuracy and fairness. To tackle this challenge, we present a novel approach utilizing counterfactual data augmentation for bias mitigation. This method involves creating diverse neighborhoods using counterfactuals before message passing, facilitating unbiased node representations learning from the augmented graph. Subsequently, an adversarial discriminator is employed to diminish bias in predictions by conventional GNN classifiers. Our proposed technique, Fair-ICD, ensures the fairness of GNNs under moderate conditions. Experiments on standard datasets using three GNN backbones demonstrate that Fair-ICD notably enhances fairness metrics while preserving high predictive performance.

Proce...

Proceedings of the 2024 KDD Workshop

Learnable Kernel Density Estimation for Graphs 2025-08-20
Show

This work proposes a framework LGKDE that learns kernel density estimation for graphs. The key challenge in graph density estimation lies in effectively capturing both structural patterns and semantic variations while maintaining theoretical guarantees. Combining graph kernels and kernel density estimation (KDE) is a standard approach to graph density estimation, but has unsatisfactory performance due to the handcrafted and fixed features of kernels. Our method LGKDE leverages graph neural networks to represent each graph as a discrete distribution and utilizes maximum mean discrepancy to learn the graph metric for multi-scale KDE, where all parameters are learned by maximizing the density of graphs relative to the density of their well-designed perturbed counterparts. The perturbations are conducted on both node features and graph spectra, which helps better characterize the boundary of normal density regions. Theoretically, we establish consistency and convergence guarantees for LGKDE, including bounds on the mean integrated squared error, robustness, and complexity. We validate LGKDE by demonstrating its effectiveness in recovering the underlying density of synthetic graph distributions and applying it to graph anomaly detection across diverse benchmark datasets. Extensive empirical evaluation shows that LGKDE demonstrates superior performance compared to state-of-the-art baselines on most benchmark datasets.

Under Review
A Comprehensive Benchmark on Spectral GNNs: The Impact on Efficiency, Memory, and Effectiveness 2025-08-20
Show

With recent advancements in graph neural networks (GNNs), spectral GNNs have received increasing popularity by virtue of their ability to retrieve graph signals in the spectral domain. These models feature uniqueness in efficient computation as well as rich expressiveness, which stems from advanced management and profound understanding of graph data. However, few systematic studies have been conducted to assess spectral GNNs, particularly in benchmarking their efficiency, memory consumption, and effectiveness in a unified and fair manner. There is also a pressing need to select spectral models suitable for learning specific graph data and deploying them to massive web-scale graphs, which is currently constrained by the varied model designs and training settings. In this work, we extensively benchmark spectral GNNs with a focus on the spectral perspective, demystifying them as spectral graph filters. We analyze and categorize 35 GNNs with 27 corresponding filters, spanning diverse formulations and utilizations of the graph data. Then, we implement the filters within a unified spectral-oriented framework with dedicated graph computations and efficient training schemes. In particular, our implementation enables the deployment of spectral GNNs over million-scale graphs and various tasks with comparable performance and less overhead. Thorough experiments are conducted on the graph filters with comprehensive metrics on effectiveness and efficiency, offering novel observations and practical guidelines that are only available from our evaluations across graph scales. Different from the prevailing belief, our benchmark reveals an intricate landscape regarding the effectiveness and efficiency of spectral graph filters, demonstrating the potential to achieve desirable performance through tailored spectral manipulation of graph data.

Techn...

Technical Report with Appendix. Our code and evaluation is available at: https://github.com/gdmnl/Spectral-GNN-Benchmark

Structure-Aware Temporal Modeling for Chronic Disease Progression Prediction 2025-08-20
Show

This study addresses the challenges of symptom evolution complexity and insufficient temporal dependency modeling in Parkinson's disease progression prediction. It proposes a unified prediction framework that integrates structural perception and temporal modeling. The method leverages graph neural networks to model the structural relationships among multimodal clinical symptoms and introduces graph-based representations to capture semantic dependencies between symptoms. It also incorporates a Transformer architecture to model dynamic temporal features during disease progression. To fuse structural and temporal information, a structure-aware gating mechanism is designed to dynamically adjust the fusion weights between structural encodings and temporal features, enhancing the model's ability to identify key progression stages. To improve classification accuracy and stability, the framework includes a multi-component modeling pipeline, consisting of a graph construction module, a temporal encoding module, and a prediction output layer. The model is evaluated on real-world longitudinal Parkinson's disease data. The experiments involve comparisons with mainstream models, sensitivity analysis of hyperparameters, and graph connection density control. Results show that the proposed method outperforms existing approaches in AUC, RMSE, and IPW-F1 metrics. It effectively distinguishes progression stages and improves the model's ability to capture personalized symptom trajectories. The overall framework demonstrates strong generalization and structural scalability, providing reliable support for intelligent modeling of chronic progressive diseases such as Parkinson's disease.

Knowledge Graph-Infused Fine-Tuning for Structured Reasoning in Large Language Models 2025-08-20
Show

This paper addresses the problems of missing reasoning chains and insufficient entity-level semantic understanding in large language models when dealing with tasks that require structured knowledge. It proposes a fine-tuning algorithm framework based on knowledge graph injection. The method builds on pretrained language models and introduces structured graph information for auxiliary learning. A graph neural network is used to encode entities and their relations, constructing a graph-based semantic representation. A fusion mechanism is then designed to jointly model the knowledge graph embeddings with the contextual representations from the language model. To enhance the robustness of knowledge integration, a gating mechanism is introduced to dynamically balance the contributions of linguistic semantics and structural knowledge. This effectively mitigates conflicts between different representational spaces. During training, a joint loss function is constructed to account for both task performance and structural alignment objectives. This helps improve the accuracy of entity prediction and semantic reasoning. The study also includes a series of systematic sensitivity experiments. It evaluates the effects of learning rate, graph coverage, and structural perturbations on model performance. The results further validate the effectiveness and stability of the proposed method across tasks such as entity recognition, question answering, and language generation. Experimental findings show that the proposed structure-aware fine-tuning framework significantly enhances the model's ability to represent complex semantic units. It demonstrates better semantic consistency and contextual logic modeling in scenarios involving structural reasoning and entity extraction.

On the Interplay between Graph Structure and Learning Algorithms in Graph Neural Networks 2025-08-20
Show

This paper studies the interplay between learning algorithms and graph structure for graph neural networks (GNNs). Existing theoretical studies on the learning dynamics of GNNs primarily focus on the convergence rates of learning algorithms under the interpolation regime (noise-free) and offer only a crude connection between these dynamics and the actual graph structure (e.g., maximum degree). This paper aims to bridge this gap by investigating the excessive risk (generalization performance) of learning algorithms in GNNs within the generalization regime (with noise). Specifically, we extend the conventional settings from the learning theory literature to the context of GNNs and examine how graph structure influences the performance of learning algorithms such as stochastic gradient descent (SGD) and Ridge regression. Our study makes several key contributions toward understanding the interplay between graph structure and learning in GNNs. First, we derive the excess risk profiles of SGD and Ridge regression in GNNs and connect these profiles to the graph structure through spectral graph theory. With this established framework, we further explore how different graph structures (regular vs. power-law) impact the performance of these algorithms through comparative analysis. Additionally, we extend our analysis to multi-layer linear GNNs, revealing an increasing non-isotropic effect on the excess risk profile, thereby offering new insights into the over-smoothing issue in GNNs from the perspective of learning algorithms. Our empirical results align with our theoretical predictions, \emph{collectively showcasing a coupling relation among graph structure, GNNs and learning algorithms, and providing insights on GNN algorithm design and selection in practice.}

Multi-view Graph Condensation via Tensor Decomposition 2025-08-20
Show

Graph Neural Networks (GNNs) have demonstrated remarkable results in various real-world applications, including drug discovery, object detection, social media analysis, recommender systems, and text classification. In contrast to their vast potential, training them on large-scale graphs presents significant computational challenges due to the resources required for their storage and processing. Graph Condensation has emerged as a promising solution to reduce these demands by learning a synthetic compact graph that preserves the essential information of the original one while maintaining the GNN's predictive performance. Despite their efficacy, current graph condensation approaches frequently rely on a computationally intensive bi-level optimization. Moreover, they fail to maintain a mapping between synthetic and original nodes, limiting the interpretability of the model's decisions. In this sense, a wide range of decomposition techniques have been applied to learn linear or multi-linear functions from graph data, offering a more transparent and less resource-intensive alternative. However, their applicability to graph condensation remains unexplored. This paper addresses this gap and proposes a novel method called Multi-view Graph Condensation via Tensor Decomposition (GCTD) to investigate to what extent such techniques can synthesize an informative smaller graph and achieve comparable downstream task performance. Extensive experiments on six real-world datasets demonstrate that GCTD effectively reduces graph size while preserving GNN performance, achieving up to a 4.0\ improvement in accuracy on three out of six datasets and competitive performance on large graphs compared to existing approaches. Our code is available at https://anonymous.4open.science/r/gctd-345A.

ReviewGraph: A Knowledge Graph Embedding Based Framework for Review Rating Prediction with Sentiment Features 2025-08-19
Show

In the hospitality industry, understanding the factors that drive customer review ratings is critical for improving guest satisfaction and business performance. This work proposes ReviewGraph for Review Rating Prediction (RRP), a novel framework that transforms textual customer reviews into knowledge graphs by extracting (subject, predicate, object) triples and associating sentiment scores. Using graph embeddings (Node2Vec) and sentiment features, the framework predicts review rating scores through machine learning classifiers. We compare ReviewGraph performance with traditional NLP baselines (such as Bag of Words, TF-IDF, and Word2Vec) and large language models (LLMs), evaluating them in the HotelRec dataset. In comparison to the state of the art literature, our proposed model performs similar to their best performing model but with lower computational cost (without ensemble). While ReviewGraph achieves comparable predictive performance to LLMs and outperforms baselines on agreement-based metrics such as Cohen's Kappa, it offers additional advantages in interpretability, visual exploration, and potential integration into Retrieval-Augmented Generation (RAG) systems. This work highlights the potential of graph-based representations for enhancing review analytics and lays the groundwork for future research integrating advanced graph neural networks and fine-tuned LLM-based extraction methods. We will share ReviewGraph output and platform open-sourced on our GitHub page https://github.com/aaronlifenghan/ReviewGraph

KillChainGraph: ML Framework for Predicting and Mapping ATT&CK Techniques 2025-08-19
Show

The escalating complexity and volume of cyberattacks demand proactive detection strategies that go beyond traditional rule-based systems. This paper presents a phase-aware, multi-model machine learning framework that emulates adversarial behavior across the seven phases of the Cyber Kill Chain using the MITRE ATT&CK Enterprise dataset. Techniques are semantically mapped to phases via ATTACK-BERT, producing seven phase-specific datasets. We evaluate LightGBM, a custom Transformer encoder, fine-tuned BERT, and a Graph Neural Network (GNN), integrating their outputs through a weighted soft voting ensemble. Inter-phase dependencies are modeled using directed graphs to capture attacker movement from reconnaissance to objectives. The ensemble consistently achieved the highest scores, with F1-scores ranging from 97.47% to 99.83%, surpassing GNN performance (97.36% to 99.81%) by 0.03%--0.20% across phases. This graph-driven, ensemble-based approach enables interpretable attack path forecasting and strengthens proactive cyber defense.

8 pages, 3 figures
Scaling Up without Fading Out: Goal-Aware Sparse GNN for RL-based Generalized Planning 2025-08-19
Show

Generalized planning using deep reinforcement learning (RL) combined with graph neural networks (GNNs) has shown promising results in various symbolic planning domains described by PDDL. However, existing approaches typically represent planning states as fully connected graphs, leading to a combinatorial explosion in edge information and substantial sparsity as problem scales grow, especially evident in large grid-based environments. This dense representation results in diluted node-level information, exponentially increases memory requirements, and ultimately makes learning infeasible for larger-scale problems. To address these challenges, we propose a sparse, goal-aware GNN representation that selectively encodes relevant local relationships and explicitly integrates spatial features related to the goal. We validate our approach by designing novel drone mission scenarios based on PDDL within a grid world, effectively simulating realistic mission execution environments. Our experimental results demonstrate that our method scales effectively to larger grid sizes previously infeasible with dense graph representations and substantially improves policy generalization and success rates. Our findings provide a practical foundation for addressing realistic, large-scale generalized planning tasks.

Refining Contrastive Learning and Homography Relations for Multi-Modal Recommendation 2025-08-19
Show

Multi-modal recommender system focuses on utilizing rich modal information ( i.e., images and textual descriptions) of items to improve recommendation performance. The current methods have achieved remarkable success with the powerful structure modeling capability of graph neural networks. However, these methods are often hindered by sparse data in real-world scenarios. Although contrastive learning and homography ( i.e., homogeneous graphs) are employed to address the data sparsity challenge, existing methods still suffer two main limitations: 1) Simple multi-modal feature contrasts fail to produce effective representations, causing noisy modal-shared features and loss of valuable information in modal-unique features; 2) The lack of exploration of the homograph relations between user interests and item co-occurrence results in incomplete mining of user-item interplay. To address the above limitations, we propose a novel framework for \textbf{R}\textbf{E}fining multi-mod\textbf{A}l cont\textbf{R}astive learning and ho\textbf{M}ography relations (\textbf{REARM}). Specifically, we complement multi-modal contrastive learning by employing meta-network and orthogonal constraint strategies, which filter out noise in modal-shared features and retain recommendation-relevant information in modal-unique features. To mine homogeneous relationships effectively, we integrate a newly constructed user interest graph and an item co-occurrence graph with the existing user co-occurrence and item semantic graphs for graph learning. The extensive experiments on three real-world datasets demonstrate the superiority of REARM to various state-of-the-art baselines. Our visualization further shows an improvement made by REARM in distinguishing between modal-shared and modal-unique features. Code is available \href{https://github.com/MrShouxingMa/REARM}{here}.

This ...

This paper has been accepted as a full paper at ACM MM 2025

CaPGNN: Optimizing Parallel Graph Neural Network Training with Joint Caching and Resource-Aware Graph Partitioning 2025-08-19
Show

Graph Neural Networks (GNNs) have shown remarkable capabilities in processing graph-structured data prevalent in various real-world applications. However, the scalability of full-batch GNN training becomes severely limited by high communication overhead and load imbalance in distributed environments. In this paper, we present CaPGNN, a novel framework for efficient parallel full-batch GNN training on single-server with multi-GPU, designed specifically to reduce redundant inter-GPU communication and balance computational workloads. We propose a joint adaptive caching algorithm that leverages both CPU and GPU memory to significantly reduce the repetitive transmission of vertex features across partitions. Additionally, we introduce a resource-aware graph partitioning algorithm that adjusts subgraph sizes dynamically according to the heterogeneous computational and communication capacities of GPUs. Extensive experiments on large-scale benchmark datasets demonstrate that CaPGNN effectively reduces communication costs by up to 96% and accelerates GNN training by up to 12.7 times compared to state-of-the-art approaches. Our results highlight the potential of adaptive caching and resource-aware partitioning to facilitate scalable, efficient, and practical deployment of full-batch GNN training in distributed computing environments.

About

Daily ArXiv Papers.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages