Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 3 additions & 2 deletions detector/docker.sh
Original file line number Diff line number Diff line change
Expand Up @@ -28,8 +28,8 @@ fi

# ========================== BUILD CONFIGURATION / IMAGE SELECTION =======================

SEMANTIC_VERSION=0.1.3
NODE_LIB_VERSION=0.10.12
SEMANTIC_VERSION=0.1.4
NODE_LIB_VERSION=0.10.13
build_args=" --build-arg NODE_LIB_VERSION=$NODE_LIB_VERSION"

if [ -f /etc/nv_tegra_release ] # Check if we are on a Jetson device
Expand Down Expand Up @@ -75,6 +75,7 @@ run_args="-it"
run_args+=" -v $HOME/node_data/$DETECTOR_NAME:/data"
run_args+=" -h ${HOSTNAME}_DEV"
run_args+=" -e HOST=$LOOP_HOST -e ORGANIZATION=$LOOP_ORGANIZATION -e PROJECT=$LOOP_PROJECT"
run_args+=" -e USE_BACKDOOR_CONTROLS=$USE_BACKDOOR_CONTROLS"
run_args+=" --name $DETECTOR_NAME"
run_args+=" --runtime=nvidia -e NVIDIA_VISIBLE_DEVICES=all"
run_args+=" -p 8004:80"
Expand Down
38 changes: 25 additions & 13 deletions detector/yolov5_detector.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@
import re
import subprocess
import time
from typing import List, Optional, Tuple
from typing import Optional, Tuple

import cv2
import numpy as np
Expand All @@ -22,6 +22,8 @@ def __init__(self) -> None:
self.yolov5: Optional[yolov5.YoLov5TRT] = None
self.weight_type = os.getenv('WEIGHT_TYPE', 'FP16')
assert self.weight_type in ['FP16', 'FP32', 'INT8'], 'WEIGHT_TYPE must be one of FP16, FP32, INT8'
self.log = logging.getLogger('Yolov5Detector')
self.log.setLevel(logging.INFO)

def init(self) -> None:
resolution = self.model_info.resolution
Expand Down Expand Up @@ -61,7 +63,7 @@ def clip_point(x: float, y: float, img_width: int, img_height: int) -> Tuple[flo
y = min(max(0, y), img_height)
return x, y

def evaluate(self, image: List[np.uint8]) -> Detections:
def evaluate(self, image: np.ndarray) -> Detections:
assert self.yolov5 is not None, 'init() must be executed first. Maybe loading the engine failed?!'
detections = Detections()
try:
Expand All @@ -70,7 +72,7 @@ def evaluate(self, image: List[np.uint8]) -> Detections:
im_height, im_width, _ = cv_image.shape
results, inference_ms = self.yolov5.infer(cv_image)
skipped_detections = []
logging.info(f'took {inference_ms} s, overall {time.time() -t} s')
self.log.debug('took %f s, overall %f s', inference_ms, time.time() - t)
for detection in results:
x, y, w, h, category_idx, probability = detection
category = self.model_info.categories[category_idx]
Expand All @@ -80,20 +82,30 @@ def evaluate(self, image: List[np.uint8]) -> Detections:
if category.type == CategoryType.Box:
x, y, w, h = self.clip_box(x, y, w, h, im_width, im_height)
detections.box_detections.append(
BoxDetection(category_name=category.name, x=x, y=y, width=w, height=h, category_id=category.id,
model_name=self.model_info.version, confidence=probability))
BoxDetection(category_name=category.name,
x=round(x),
y=round(y),
width=round(x+w)-round(x),
height=round(y+h)-round(y),
category_id=category.id,
model_name=self.model_info.version,
confidence=probability))
elif category.type == CategoryType.Point:
cx, cy = (np.average([x, x + w]), np.average([y, y + h]))
cx, cy = x + w/2, y + h/2
cx, cy = self.clip_point(cx, cy, im_width, im_height)
detections.point_detections.append(
PointDetection(category_name=category.name, x=int(cx), y=int(cy), category_id=category.id,
model_name=self.model_info.version, confidence=probability))
PointDetection(category_name=category.name,
x=cx,
y=cy,
category_id=category.id,
model_name=self.model_info.version,
confidence=probability))
if skipped_detections:
log_msg = '\n'.join([str(d) for d in skipped_detections])
logging.warning(
f'Removed {len(skipped_detections)} small detections from result: \n{log_msg}')
except Exception:
logging.exception('inference failed')
self.log.exception('inference failed')
return detections

def _create_engine(self, resolution: int, cat_count: int, wts_file: str) -> str:
Expand All @@ -110,13 +122,13 @@ def _create_engine(self, resolution: int, cat_count: int, wts_file: str) -> str:
with open('../src/config.h', 'r+') as f:
content = f.read()
if self.weight_type == 'INT8':
logging.info('using INT8')
self.log.info('using INT8')
content = content.replace('#define USE_FP16', '#define USE_INT8')
elif self.weight_type == 'FP32':
logging.info('using FP32')
self.log.info('using FP32')
content = content.replace('#define USE_FP16', '#define USE_FP32')
else:
logging.info('using FP16')
self.log.info('using FP16')

content = re.sub('(kNumClass =) \d*', r'\1 ' +
str(cat_count), content)
Expand All @@ -128,7 +140,7 @@ def _create_engine(self, resolution: int, cat_count: int, wts_file: str) -> str:

subprocess.run('make -j6 -Wno-deprecated-declarations',
shell=True, check=True)
logging.warning('currently we assume a Yolov5 s6 model;\
self.log.warning('currently we assume a Yolov5 s6 model;\
parameterization of the variant (s, s6, m, m6, ...) still needs to be done')
# TODO parameterize variant "s6"
subprocess.run(
Expand Down
5 changes: 3 additions & 2 deletions trainer/docker.sh
Original file line number Diff line number Diff line change
Expand Up @@ -44,8 +44,8 @@ fi
# NODE_LIB_VERSION should only be used, to build the corresponding version and deploy to docker
# make sure the remote repository always has the 'latest' tag (otherwise the CI tests will fail)

SEMANTIC_VERSION=0.1.3
NODE_LIB_VERSION=0.10.12
SEMANTIC_VERSION=0.1.4
NODE_LIB_VERSION=0.10.13

#image="zauberzeug/yolov5-trainer:$SEMANTIC_VERSION-nlv$NODE_LIB_VERSION"
image="zauberzeug/yolov5-trainer:latest"
Expand Down Expand Up @@ -74,6 +74,7 @@ run_args+=" -h ${HOSTNAME}_DEV"
run_args+=" -e HOST=$HOST -e USERNAME=$USERNAME -e PASSWORD=$PASSWORD -e LOOP_SSL_CERT_PATH=$LOOP_SSL_CERT_PATH"
run_args+=" -e BATCH_SIZE=$BATCH_SIZE -e UVICORN_RELOAD=$UVICORN_RELOAD -e RESET_POINTS=$RESET_POINTS -e KEEP_OLD_TRAININGS=$KEEP_OLD_TRAININGS"
run_args+=" -e NODE_TYPE=trainer -e YOLOV5_MODE=$YOLOV5_MODE -e RESTART_AFTER_TRAINING=$RESTART_AFTER_TRAINING -e TRAINER_IDLE_TIMEOUT_SEC=$TRAINER_IDLE_TIMEOUT_SEC"
run_args+=" -e USE_BACKDOOR_CONTROLS=$USE_BACKDOOR_CONTROLS"
run_args+=" --name $TRAINER_NAME"
run_args+=" --runtime=nvidia -e NVIDIA_VISIBLE_DEVICES=all --gpus all"
run_args+=" --ipc host"
Expand Down
Loading