Skip to content

change to python3 #3

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
58 changes: 29 additions & 29 deletions non-convex.py
Original file line number Diff line number Diff line change
Expand Up @@ -63,7 +63,7 @@ def interpolation(f, g, f_alpha, g_alpha, alpha, c2, strong_wolfe_alpha, iters=2
# https://github.com/tamland/non-linear-optimization
l = 0.0
h = 1.0
for i in xrange(iters):
for i in np.arange(iters):
if strong_wolfe_alpha(f, g, alpha, c2):
return alpha

Expand All @@ -83,13 +83,13 @@ def steepest_descent(f, grad, x0, iterations, error):
x = x0
x_old = x
c2 = 0.9
for i in xrange(iterations):
for i in np.arange(iterations):
pk = -grad(x)
alpha = step_length(f, grad, x, 1.0, pk, c2)
x = x + alpha * pk
if i % 10 == 0:
# print " iter={}, grad={}, alpha={}, x={}, f(x)={}".format(i, pk, alpha, x, f(x))
print " iter={}, x={}, f(x)={}".format(i, x, f(x))
print(" iter={}, x={}, f(x)={}".format(i, x, f(x)))

if np.linalg.norm(x - x_old) < error:
break
Expand All @@ -101,13 +101,13 @@ def newton(f, g, H, x0, iterations, error):
x = x0
x_old = x
c2 = 0.9
for i in xrange(iterations):
for i in np.arange(iterations):
pk = -np.linalg.solve(H(x), g(x))
alpha = step_length(f, g, x, 1.0, pk, c2)
x = x + alpha * pk
if i % 50 == 0:
# print " iter={}, grad={}, alpha={}, x={}, f(x)={}".format(i, pk, alpha, x, f(x))
print " iter={}, x={}, f(x)={}".format(i, x, f(x))
print(" iter={}, x={}, f(x)={}".format(i, x, f(x)))

if np.linalg.norm(x - x_old) < error:
break
Expand All @@ -123,7 +123,7 @@ def conjugate_gradient(f, g, x0, iterations, error):
gk = g(xk)
pk = -gk

for i in xrange(iterations):
for i in np.arange(iterations):
alpha = step_length(f, g, xk, 1.0, pk, c2)
xk1 = xk + alpha * pk
gk1 = g(xk1)
Expand All @@ -132,7 +132,7 @@ def conjugate_gradient(f, g, x0, iterations, error):

if i % 10 == 0:
# print " iter={}, grad={}, alpha={}, x={}, f(x)={}".format(i, pk, alpha, xk, f(xk))
print " iter={}, x={}, f(x)={}".format(i, xk, f(xk))
print(" iter={}, x={}, f(x)={}".format(i, xk, f(xk)))

if np.linalg.norm(xk1 - xk) < error:
xk = xk1
Expand All @@ -151,7 +151,7 @@ def bfgs(f, g, x0, iterations, error):
I = np.identity(xk.size)
Hk = I

for i in xrange(iterations):
for i in np.arange(iterations):
# compute search direction
gk = g(xk)
pk = -Hk.dot(gk)
Expand All @@ -175,7 +175,7 @@ def bfgs(f, g, x0, iterations, error):

if i % 10 == 0:
# print " iter={}, grad={}, alpha={}, x={}, f(x)={}".format(i, pk, alpha, xk, f(xk))
print " iter={}, x={}, f(x)={}".format(i, xk, f(xk))
print(" iter={}, x={}, f(x)={}".format(i, xk, f(xk)))

if np.linalg.norm(xk1 - xk) < error:
xk = xk1
Expand All @@ -201,7 +201,7 @@ def Hp(H0, p):
q = g(xk)
a = np.zeros(m_t)
b = np.zeros(m_t)
for i in reversed(xrange(m_t)):
for i in reversed(np.arange(m_t)):
s = sks[i]
y = yks[i]
rho_i = float(1.0 / y.T.dot(s))
Expand All @@ -210,7 +210,7 @@ def Hp(H0, p):

r = H0.dot(q)

for i in xrange(m_t):
for i in np.arange(m_t):
s = sks[i]
y = yks[i]
rho_i = float(1.0 / y.T.dot(s))
Expand All @@ -219,7 +219,7 @@ def Hp(H0, p):

return r

for i in xrange(iterations):
for i in np.arange(iterations):
# compute search direction
gk = g(xk)
pk = -Hp(I, gk)
Expand All @@ -245,8 +245,8 @@ def Hp(H0, p):
rho_k = float(1.0 / yk.dot(sk))

if i % 10 == 0:
print " iter={}, grad={}, alpha={}, x={}, f(x)={}".format(i, pk, \
alpha, xk, f(xk))
print(" iter={}, grad={}, alpha={}, x={}, f(x)={}".format(i, pk, \
alpha, xk, f(xk)))

if np.linalg.norm(xk1 - xk) < error:
xk = xk1
Expand All @@ -262,42 +262,42 @@ def Hp(H0, p):
error = 1e-4
max_iterations = 1000

print '\n======= Steepest Descent ======\n'
print('\n======= Steepest Descent ======\n')
start = time.time()
x, n_iter = steepest_descent(rosenbrock, grad_rosen, x0,
iterations=max_iterations, error=error)
end = time.time()
print " Steepest Descent terminated in {} iterations, x = {}, f(x) = {}, time elapsed {}, time per iter {}"\
.format(n_iter, x, rosenbrock(x), end - start, (end - start) / n_iter)
print(" Steepest Descent terminated in {} iterations, x = {}, f(x) = {}, time elapsed {}, time per iter {}"\
.format(n_iter, x, rosenbrock(x), end - start, (end - start) / n_iter))

print '\n======= Conjugate Gradient Method ======\n'
print('\n======= Conjugate Gradient Method ======\n')
start = time.time()
x, n_iter = conjugate_gradient(rosenbrock, grad_rosen, x0,
iterations=max_iterations, error=error)
end = time.time()
print " Conjugate Gradient Method terminated in {} iterations, x = {}, f(x) = {}, time elapsed {}, time per iter {}"\
.format(n_iter, x, rosenbrock(x), end - start, (end - start) / n_iter)
print(" Conjugate Gradient Method terminated in {} iterations, x = {}, f(x) = {}, time elapsed {}, time per iter {}"\
.format(n_iter, x, rosenbrock(x), end - start, (end - start) / n_iter))

print '\n======= Newton\'s Method ======\n'
print('\n======= Newton\'s Method ======\n')
start = time.time()
x, n_iter = newton(rosenbrock, grad_rosen, hessian_rosen, x0,
iterations=max_iterations, error=error)
end = time.time()
print " Newton\'s Method terminated in {} iterations, x = {}, f(x) = {}, time elapsed {}, time per iter {}" \
.format(n_iter, x, rosenbrock(x), end - start, (end - start) / n_iter)
print(" Newton\'s Method terminated in {} iterations, x = {}, f(x) = {}, time elapsed {}, time per iter {}" \
.format(n_iter, x, rosenbrock(x), end - start, (end - start) / n_iter))

print '\n======= Broyden-Fletcher-Goldfarb-Shanno ======\n'
print('\n======= Broyden-Fletcher-Goldfarb-Shanno ======\n')
start = time.time()
x, n_iter = bfgs(rosenbrock, grad_rosen, x0,
iterations=max_iterations, error=error)
end = time.time()
print " BFGS terminated in {} iterations, x = {}, f(x) = {}, time elapsed {}, time per iter {}"\
.format(n_iter, x, rosenbrock(x), end - start, (end - start) / n_iter)
print(" BFGS terminated in {} iterations, x = {}, f(x) = {}, time elapsed {}, time per iter {}"\
.format(n_iter, x, rosenbrock(x), end - start, (end - start) / n_iter))

print '\n======= Limited memory Broyden-Fletcher-Goldfarb-Shanno ======\n'
print('\n======= Limited memory Broyden-Fletcher-Goldfarb-Shanno ======\n')
start = time.time()
x, n_iter = l_bfgs(rosenbrock, grad_rosen, x0,
iterations=max_iterations, error=error)
end = time.time()
print " l-BFGS terminated in {} iterations, x = {}, f(x) = {}, time elapsed {}, time per iter {}"\
.format(n_iter, x, rosenbrock(x), end - start, (end - start) / n_iter)
print(" l-BFGS terminated in {} iterations, x = {}, f(x) = {}, time elapsed {}, time per iter {}"\
.format(n_iter, x, rosenbrock(x), end - start, (end - start) / n_iter))