DORNet: A Degradation Oriented and Regularized Network for
Blind Depth Super-Resolution
🌟 CVPR 2025 (Oral Presentation) 🌟
Zhengxue Wang1*, Zhiqiang Yan✉1*, Jinshan Pan1, Guangwei Gao2, Kai Zhang3, Jian Yang✉1
*Equal contribution
✉Corresponding author
1Nanjing University of Science and Technology
2Nanjing University of Posts and Telecommunications
3Nanjing University
Overview of DORNet. Given
Python==3.11.5
PyTorch==2.1.0
numpy==1.23.5
torchvision==0.16.0
scipy==1.11.3
Pillow==10.0.1
tqdm==4.65.0
scikit-image==0.21.0
mmcv-full==1.7.2
Pretrained models can be found in checkpoints.
For the RGB-D-D and NYU-v2 datasets, we use a single GPU to train our DORNet. For the larger TOFDC dataset, we employ multiple GPUs to accelerate training.
Train on real-world RGB-D-D
> python train_nyu_rgbdd.py
Train on real-world TOFDSR
> python -m torch.distributed.launch --nproc_per_node 2 train_tofdsr.py --result_root 'experiment/TOFDSR'
Train on synthetic NYU-v2
> python train_nyu_rgbdd.py
Train on real-world RGB-D-D
> python train_nyu_rgbdd.py --tiny_model
Train on real-world TOFDSR
> python -m torch.distributed.launch --nproc_per_node 2 train_tofdsr.py --result_root 'experiment/TOFDSR_T' --tiny_model
Train on synthetic NYU-v2
> python train_nyu_rgbdd.py --tiny_model
Test on real-world RGB-D-D
> python test_nyu_rgbdd.py
Test on real-world TOFDSR
> python test_tofdsr.py
Test on synthetic NYU-v2
> python test_nyu_rgbdd.py
Test on real-world RGB-D-D
> python test_nyu_rgbdd.py --tiny_model
Test on real-world TOFDSR
> python test_tofdsr.py --tiny_model
Test on synthetic NYU-v2
> python test_nyu_rgbdd.py --tiny_model
Complexity on RGB-D-D (w/o Noisy) tested by a 4090 GPU. A larger circle diameter indicates a higher inference time.
Visual results on the real-world RGB-D-D dataset (w/o Noise).
If our method proves to be of any assistance, please consider citing:
@inproceedings{wang2025dornet,
title={DORNet: A Degradation Oriented and Regularized Network for Blind Depth Super-Resolution},
author={Wang, Zhengxue and Yan, Zhiqiang and Pan, Jinshan and Gao, Guangwei and Zhang, Kai and Yang, Jian},
booktitle={Proceedings of the Computer Vision and Pattern Recognition Conference},
pages={15813--15822},
year={2025}
}