Skip to content

yanliang3612/Awesome-Generative-AI-for-Material-Discovery

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 

Repository files navigation

Awesome-Generative-AI-for-Material-Discovery

Awesome License: MIT

🔥🔥🔥 A Summary on Generative AI for Material Discovery

Project Page [This Page]

A comprehensive survey on generative AI for material discovery. ✨


Table of Contents


Awesome Papers

Large Language Models

Title Venue Date Code Demo
ChatGPT in the Material Design: Selected Case Studies to Assess the Potential of ChatGPT
Journal of Chemical Information and Modeling 2024 2024.01.18 - -
Star
Crystal structure generation with autoregressive large language modeling
Nature Communications 2024 2023.07.10 Github -

|Star
Fine-Tuned Language Models Generate Stable Inorganic Materials as Text
|ICLR 2024|2024.02.06|Github|-|

| Star
Integrating Chemistry Knowledge in Large Language Models via Prompt Engineering
|Arxiv 2024|2024.05.22|Github|-|

|Star
LLMatDesign: Autonomous Materials Discovery with Large Language Models
|Arxiv 2024|2024.06.19|Github|-|

| Star
MatterGPT: A Generative Transformer for Multi-Property Inverse Design of Solid-State Materials
| Arxiv 2024 | 2024.08.14 | Github | - |

| GenMS: Generative Hierarchical Materials Search
| NeurIPS 2024 | 2024.09.10 | - | Demo |

| Star
FlowLLM: Flow Matching for Material Generation with Large Language Models as Base Distributions
| NeurIPS 2024 | 2024.10.30 | Github | - |

| Star
Invariant Tokenization for Language Model Enabled Crystal Materials Generation
| NeurIPS 2024 | 2025.02.28 | Github | - |

Diffusion Models

Title Venue Date Code Demo
Star
Crystal Structure Prediction by Joint Equivariant Diffusion
NeurIPS 2023 2023.07.30 GitHub -
Star
MOFDiff: Coarse-grained Diffusion for Metal-Organic Framework Design
ICLR 2024 2023.10.16 GitHub -
UniMat: Scalable Diffusion for Materials Generation Arxiv 2023 2023.10.18 - demo
Star
MatterGen: A Generative Model for Inorganic Materials Design
Nature 2025 2023.12.06 GitHub -
Star
Space Group Constrained Crystal Generation
ICLR 2024 2024.02.06 GitHub -
Star
An Equivariant Flow Matching Framework for Learning Molecular Crystallization
ICML 2024 Workshop 2024.06.17 GitHub -
Star
Multi-modal Conditioning for Metal-Organic Frameworks Generation Using 3D Modeling Techniques
Nature Communications 2025 2024.07.05 GitHub -
Star
FlowMM: Generating Materials with Riemannian Flow Matching
ICML 2024 2024.07.07 GitHub -
Star
Equivariant Diffusion for Crystal Structure Prediction
ICML 2024 2024.07.21 GitHub -
GenMS: Generative Hierarchical Materials Search
NeurIPS 2024 2024.09.10 - Demo

VAE Models

Title Venue Date Code Demo
Star
Crystal Diffusion Variational Autoencoder for Periodic Material Generation
ICLR 2022 2021.10.21 GitHub -
Star
Deep learning generative model for crystal structure prediction
NPJ computational materials 2024 2024.08.10 GitHub -

Represenation & Pretraining

| |Title|Venue|Date|Code|Demo| |-|-|-|-|-| | Star
Periodic Graph Transformers for Crystal Material Property Prediction | NeurIPS 2022 | 2022.09.23 | GitHub | - | | Resolving the data ambiguity for periodic crystals | NeurIPS 2022 | 2022.11.28 | - | - | | Capturing long-range interaction with reciprocal space neural network | Arxiv 2022 | 2022.11.30 | - | - | | A Crystal-Specific Pre-Training Framework for Crystal Material Property Prediction | Arxiv 2023 | 2023.06.08 | - | - | | Star
Efficient Approximations of Complete Interatomic Potentials for Crystal Property Prediction | ICML 2023 | 2023.06.12 | GitHub | - | | Star
From Molecules to Materials: Pre-training Large Generalizable Models for Atomic Property Prediction | ICLR 2024 | 2023.10.25| GitHub | - | | Pretraining Strategies for Structure Agnostic Material Property Prediction | Journal of Chemical Information and Modeling 2024 | 2024.02.01 | - | - | | Star
Complete and Efficient Graph Transformers for Crystal Material Property Prediction | ICLR 2024 | 2024.03.18 | GitHub | - | | A Diffusion-Based Pre-training Framework for Crystal Property Prediction | AAAI 2024 | 2024.03.24 | - | - | | Artificial Intelligence Driving Materials Discovery? Perspective on the Article: Scaling Deep Learning for Materials Discovery | Chemistry of Materials 2024 | 2024.08.08 | - | - |

Multi-Modal Training & Learning

Title Venue Date Code Demo
Star
LLM-Prop: Predicting Physical And Electronic Properties of Crystalline Solids From Their Text Descriptions
Arxiv 2023 2023.10.21 GitHub -
Multimodal learning for crystalline materials Arxiv 2023 2023.11.30 - -
LBNL: A foundation model for atomistic materials chemistry Arxiv 2023 2023.12.29 - -
Materials science in the era of large language models: a perspective Digital Discovery 2024 2024.03.11 - -
Star
CrysMMNet: Multimodal Representation for Crystal Property Prediction
UAI 2023 2024.06.09 GitHub -
Star
MatText: Do Language Models Need More than Text & Scale for Materials Modeling?
Arxiv 2024 2024.06.25 GitHub -
Star
Multi-modal conditioning for metal-organic frameworks generation using 3D modeling techniques
Nature Communications 2025 2024.07.05 GitHub Demo
Star
From Text to Insight: Large Language Models for Materials Science Data Extraction
Arxiv 2024 2024.07.23 GitHub -
Graph-Text Contrastive Learning of Inorganic Crystal Structure toward a Foundation Model of Inorganic Materials ChemRxiv 2024 2024.08.15 - -
Integrating Chemistry Knowledge in Large Language Models via Prompt Engineering Arxiv 2024 2024.08.22 - -
GenMS: Generative Hierarchical Materials Search NeurIPS 2024 2024.09.10 - Demo

Awesome Datasets

Contact

For any questions, feedback, or collaboration regarding the integrated repository of papers and code, feel free to contact Liang Yan at yanliangfdu@gmail.com.

About

The papers and code related to deep generative models for material discovery.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published