A comprehensive portable development environment that provides a fully integrated toolkit for software development, machine learning, AI research, automation, financial analysis, and business intelligence. DEBT (Development Environment & Business Tools) combines powerful development capabilities with advanced business and financial analysis tools.
- Git
- A Linux system (tested on Arch Linux, supports Ubuntu/Debian)
- Internet connection for package downloads
-
Clone the repository:
git clone <repository-url> nvimdronat cd nvimdronat
-
Install packages:
chmod +x install-packages.sh sudo ./install-packages.sh
This script will:
- Detect your Linux distribution (supports Ubuntu/Debian and Arch Linux)
- Resolve Node.js package conflicts automatically
- Install system packages (build tools, git, curl, Node.js v24.6.0, etc.)
- Install GitHub CLI and Docker
- Create a Python virtual environment at
~/.debt-env
(PEP 668 compliant) - Install comprehensive Python packages (shell-gpt, jupyter, pandas, scikit-learn, ML/AI tools)
- Configure Docker service and user permissions
-
Activate the development environment:
source ~/activate_debt_env.sh
Or manually activate the virtual environment:
source ~/.debt-env/bin/activate
-
Run the interactive menu:
./menu.sh
- Development Tools: base-devel (Arch) / build-essential (Ubuntu), git, curl, wget, unzip, sudo
- Search & Navigation: ripgrep, fd, which
- Terminal: tmux for session management
- Docker: docker, docker-compose, python-pipx for containerized applications
- GitHub CLI: github-cli for seamless GitHub integration
- Node.js: nodejs v24.6.0, npm v11.5.2 for JavaScript development and n8n
- JSON Processing: jq for data manipulation
- Security: ca-certificates for SSL/TLS
All Python packages are installed in an isolated virtual environment to comply with PEP 668:
- AI Assistant: shell-gpt v1.4.5 (sgpt command)
- Development: jupyter, jupyterlab, notebook, ipython
- Web Frameworks: fastapi, uvicorn for API development
- Data Manipulation: pandas, numpy
- Visualization: matplotlib, seaborn, plotly
- Scientific Computing: scipy
- ML Framework: scikit-learn
- MLOps: mlflow, tensorboard for experiment tracking
- Model Serving: gradio, streamlit for web interfaces
- HTTP Requests: requests, httpx
- Data Validation: pydantic
- CLI Tools: typer, rich for beautiful terminal output
- Neovim - Advanced text editor with pre-configured plugins
- n8n - Business workflow automation (port 5678)
- Bash Shell - Enhanced command line interface
- Lean Projects - Mathematical theorem proving environment
- OpenBB Terminal - Financial data analysis and market intelligence
- ShellGPT - AI-powered business and development assistant (requires API key)
- Shellngn Pro - Web-based remote access for business systems (port 8080)
- ML/AI Environment - Comprehensive business intelligence and ML tools:
- JupyterLab (port 8888) - Modern notebook interface
- Jupyter Notebook (port 8888) - Classic notebook interface
- TensorBoard (port 6006) - ML experiment visualization
- Gradio Demo Server (port 7860) - Interactive ML model demos
- Streamlit App Server (port 8501) - Data science web apps
- MLflow UI (port 5000) - ML experiment tracking
- Python ML REPL - Interactive Python environment
Port | Service | Description |
---|---|---|
5678 | n8n | Business workflow automation |
8080 | Shellngn Pro | Web-based remote access |
8888 | Jupyter | JupyterLab/Notebook interface |
6006 | TensorBoard | ML experiment visualization |
7860 | Gradio | Interactive ML model demos |
8501 | Streamlit | Data science web applications |
5000 | MLflow | ML experiment tracking UI |
# Activate DEBT Python environment
source ~/activate_debt_env.sh
# Verify installation
sgpt --version # Should show ShellGPT 1.4.5
python -c "import pandas, sklearn, gradio, mlflow; print('β ML environment ready')"
node --version # Should show v24.6.0
docker --version # Docker support available
# Activate DEBT environment first
source ~/activate_debt_env.sh
# Set up API key (required for ShellGPT)
sgpt --install # Follow prompts to configure API key
# Business Intelligence queries
sgpt "analyze sales data trends"
sgpt --code "create a python script for financial reporting"
sgpt --shell "find all business data files modified today"
sgpt "suggest automation workflows for business processes"
# Start the interactive menu
./menu.sh
# Select option 8 (ML/AI Environment), then:
# 1 - JupyterLab (http://localhost:8888)
# 2 - Jupyter Notebook (http://localhost:8888)
# 3 - TensorBoard (http://localhost:6006)
# 4 - Gradio Demo Server (http://localhost:7860)
# 5 - Streamlit App Server (http://localhost:8501)
# 6 - MLflow UI (http://localhost:5000)
# Docker is installed and configured
# Note: You may need to restart your session for group changes to take effect
docker --version
docker-compose --version
# Start Docker service if needed
sudo systemctl start docker
# Build and run DEBT container
docker build -t debt_environment .
docker run -it -p 5678:5678 -p 8888:8888 debt_environment
If you prefer to install packages manually or need to troubleshoot:
# Arch Linux
sudo pacman -S base-devel curl wget unzip git sudo ripgrep fd python python-pip python-virtualenv tmux nodejs npm jq ca-certificates which github-cli docker docker-compose python-pipx
# Ubuntu/Debian
sudo apt-get install build-essential curl wget unzip git sudo ripgrep fd-find python3-pip python3-venv tmux nodejs npm jq ca-certificates software-properties-common gh docker.io docker-compose
# Create virtual environment
python -m venv ~/.debt-env
source ~/.debt-env/bin/activate
# Upgrade pip and install build tools
pip install --upgrade pip setuptools wheel
# Install core packages
pip install shell-gpt jupyter jupyterlab notebook ipython
# Install data science packages
pip install pandas numpy matplotlib seaborn plotly scipy
# Install ML/AI packages
pip install scikit-learn mlflow tensorboard gradio streamlit
# Install web development packages
pip install fastapi uvicorn requests httpx pydantic
# Install utilities
pip install typer rich tqdm joblib
# Enable Docker service
sudo systemctl enable docker
sudo systemctl start docker
# Add user to docker group (requires logout/login)
sudo usermod -aG docker $USER
# Create activation script
echo '#!/bin/bash' > ~/activate_debt_env.sh
echo 'source ~/.debt-env/bin/activate' >> ~/activate_debt_env.sh
chmod +x ~/activate_debt_env.sh
If you encounter Node.js package conflicts:
# The install script handles this automatically, but if manual resolution is needed:
sudo pacman -S nodejs # This will prompt to remove conflicting packages
# Answer 'y' when asked to remove nodejs-lts-jod
If the virtual environment isn't working:
# Recreate the virtual environment
rm -rf ~/.debt-env
python -m venv ~/.debt-env
source ~/.debt-env/bin/activate
pip install --upgrade pip setuptools wheel
# Reinstall packages as needed
If you get Docker permission errors:
# Add user to docker group (requires session restart)
sudo usermod -aG docker $USER
# Then logout and login again, or restart your session
# Verify docker group membership
groups $USER
# Start Docker service if needed
sudo systemctl start docker
sudo systemctl enable docker
If you encounter "externally-managed-environment" errors:
# This is normal on modern Linux distributions
# Use the virtual environment approach (already implemented in install script)
python -m venv ~/.debt-env
source ~/.debt-env/bin/activate
pip install <package-name>
If ShellGPT isn't working:
# Activate environment and configure API key
source ~/activate_debt_env.sh
sgpt --install
# Follow the prompts to set up your OpenAI API key
If you encounter package conflicts during installation:
# Update system first
sudo pacman -Syu # Arch Linux
sudo apt-get update && sudo apt-get upgrade # Ubuntu/Debian
# Clear package cache if needed
sudo pacman -Sc --noconfirm # Arch Linux
sudo apt-get autoclean # Ubuntu/Debian
# Then run install script
./install-packages.sh
If the menu script doesn't work:
# Make sure it's executable
chmod +x menu.sh
# Check if all dependencies are available
which nvim node python docker
# Activate environment before running
source ~/activate_debt_env.sh
./menu.sh
- β Fully tested on Arch Linux with automatic Node.js conflict resolution
- β Supports Ubuntu/Debian with distribution-specific package management
- β Cross-platform Docker support for containerized deployment
- Node.js Conflicts: The install script automatically resolves Node.js package conflicts on Arch Linux
- Python Environment: Uses virtual environment (PEP 668 compliant) to prevent system package conflicts
- OpenBB Installation: May fail due to complex dependencies - this is expected and doesn't affect other functionality
- Docker Group: Membership changes require session restart to take effect
- Virtual Environment Location:
~/.debt-env/
(not~/.nvim_env
) - Activation Script:
~/activate_debt_env.sh
for easy environment activation - Package Isolation: All Python packages are installed in virtual environment for system safety
- Service Ports: All web services use non-conflicting port assignments
- ML/AI Tools: TensorBoard, MLflow, and Jupyter require adequate system resources
- Docker Services: Multiple containers may require significant RAM and CPU
- Node.js Applications: n8n and other Node.js tools benefit from Node.js v24.6.0 performance improvements
DEBT includes comprehensive Docker support for containerized business environments with full port mapping:
# Build the DEBT Docker image
docker build -t debt_environment .
# Run with all service ports exposed
docker run -it \
-p 5678:5678 \
-p 8080:8080 \
-p 8888:8888 \
-p 6006:6006 \
-p 7860:7860 \
-p 8501:8501 \
-p 5000:5000 \
--name debt_container \
debt_environment
# docker-compose.yml example
version: '3.8'
services:
debt:
build: .
ports:
- "5678:5678" # n8n
- "8080:8080" # Shellngn Pro
- "8888:8888" # Jupyter
- "6006:6006" # TensorBoard
- "7860:7860" # Gradio
- "8501:8501" # Streamlit
- "5000:5000" # MLflow
volumes:
- ./data:/home/devuser/data
environment:
- DISPLAY=${DISPLAY}
# Start existing container
docker start debt_container
# Access running container
docker exec -it debt_container /bin/bash
# View container logs
docker logs debt_container
# Stop container
docker stop debt_container
We welcome contributions to enhance DEBT's capabilities! This project aims to provide the most comprehensive business-focused development environment available.
- π§ System Integration: Cross-platform compatibility improvements
- π€ AI/ML Tools: Additional ML frameworks and model serving capabilities
- πΌ Business Intelligence: Enhanced financial analysis and reporting tools
- π Automation: New workflow automation patterns and integrations
- π Data Science: Advanced analytics and visualization components
- π³ Containerization: Docker optimization and orchestration improvements
- Fork the repository
- Create a feature branch
- Test on both Arch Linux and Ubuntu (if possible)
- Ensure virtual environment compatibility
- Update documentation and README
- Submit a pull request
- Test package installation on clean systems
- Verify all menu options work correctly
- Check Docker container functionality
- Validate Python virtual environment isolation
- Test Node.js conflict resolution on Arch Linux
When reporting issues, please include:
- Operating system and version
- Installation method used
- Error messages and logs
- Steps to reproduce
- Expected vs actual behavior
DEBT is designed to be the ultimate development environment for business intelligence, financial analysis, ML/AI research, and automation tasks. Every contribution helps make it more powerful and accessible!
- Linux system (Arch Linux or Ubuntu/Debian)
- Git installed
- Internet connection available
- Sudo privileges
-
source ~/activate_debt_env.sh
works -
sgpt --version
shows ShellGPT 1.4.5 -
node --version
shows v24.6.0+ -
docker --version
works (after session restart) -
./menu.sh
launches successfully - Python imports work:
python -c "import pandas, sklearn, gradio"
- JupyterLab accessible at http://localhost:8888
- ShellGPT API key configured (
sgpt --install
) - Docker service started (
sudo systemctl start docker
) - User logged out/in for docker group membership
DEBT v2024 - Your comprehensive development environment for business intelligence, ML/AI, and automation. π