-
Implementing Gauss-Newton with different conjugate gradient methods, including
-
without conjugate gradient
-
standard conjugate gradient
-
preconditioned conjugate gradient
-
CG-Steihaug
-
preconditioned CG-Steihaug
-
-
Implementing Levenberg-Marquardt with some methods to increase speed and robustness
-
damping strategy of lambda, due to Nielsen:
-
Methods for nonlinear least squares problems - introduction and comparison
-
Damping Parameter in Marquardt's Method - original & statistic detail
-
-
CG-Steihaug
-
preconditioning
-
Carrying out data-fitting test: nonlinear_datafitting_test.m
Nonlinear Least-Squares solver: pcg_steihaug_gauss_newton.m
Example cases saved in data folder
-
dim_1_case: f_i(x) = exp(d_i*x)
-
dim_2_case.m: f_i(x) = exp( d_i * x_1 ) * sin( d_i * x_2 )
-
dim_2_quadratic_case.m: f_i(x) = d_i * x_1 + d_i.^2 * x_2