Skip to content

wyhhyw123/Metrics-for-Positive-and-Unlabeled-learning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 

Repository files navigation

Metrics-for-Positive-and-Unlabeled-learning

Metrics for Positive and Unlabeled learning 对于PU learning,计算AUC,准确率,F1值三个指标。 先运行cal_confusion_matrics()函数,计算不同阈值下的混淆矩阵,然后: (1)cal_tpr_fpr_lb_ub,计算上下界TPR和FPR,可用于画ROC曲线; (2)F1_score,计算F1值; (3)accuracy_score,计算准确率; 注意,不能计算AUC,只能给出ROC曲线。

++++++++++++++++++++++++++ 参考文献:Assessing binary classifiers using only positive and unlabeled data

About

Metrics for Positive and Unlabeled learning

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages