This project implements a machine learning pipeline to detect fraudulent credit card transactions. It uses logistic regression on a highly imbalanced dataset, applying SMOTE to balance classes.
- Exploratory Data Analysis (EDA)
- Data preprocessing with feature scaling and oversampling (SMOTE)
- Logistic Regression model training and evaluation
- Single transaction fraud prediction script
- Visualization of class distribution and evaluation metrics
data/
- Raw and processed datasetsmodels/
- Trained model and scaler saved hereplots/
- Visualizations like ROC curve and distribution plotspreprocess.py
- Data preprocessing scripttrain_model.py
- Model training scriptevaluate_model.py
- Model evaluation and plottingpredict_single.py
- Single transaction prediction tool
- Python 3.8+
- Packages listed in
requirements.txt
python -m venv .venv
source .venv/bin/activate # Linux/Mac
.venv\Scripts\activate # Windows
pip install -r requirements.txt
Usage
Run preprocessing:
python preprocess.py
Train model:
python train_model.py
Evaluate model:
python evaluate_model.py
Predict single transaction:
python predict_single.py
Ashwin Upadhyay
# Project: AI-Powered Fraud Detection & Prevention System
This project implements a machine learning pipeline to detect fraudulent credit card transactions. It uses logistic regression on a highly imbalanced dataset, applying SMOTE to balance classes.
## Features
- Exploratory Data Analysis (EDA)
- Data preprocessing with feature scaling and oversampling (SMOTE)
- Logistic Regression model training and evaluation
- Single transaction fraud prediction script
- Visualization of class distribution and evaluation metrics
## Project Structure
- `data/` - Raw and processed datasets
- `models/` - Trained model and scaler saved here
- `plots/` - Visualizations like ROC curve and distribution plots
- `preprocess.py` - Data preprocessing script
- `train_model.py` - Model training script
- `evaluate_model.py` - Model evaluation and plotting
- `predict_single.py` - Single transaction prediction tool
## Requirements
- Python 3.8+
- Packages listed in `requirements.txt`
## Installation
```bash
python -m venv .venv
source .venv/bin/activate # Linux/Mac
.venv\Scripts\activate # Windows
pip install -r requirements.txt
Usage
Run preprocessing:
python preprocess.py
Train model:
python train_model.py
Evaluate model:
python evaluate_model.py
Predict single transaction:
python predict_single.py
Ashwin Upadhyay
## 3. **requirements.txt**
numpy
pandas
scikit-learn
imbalanced-learn
matplotlib
joblib