Skip to content

🔥[ICML 2024, Official Code] First work to propose a solution to the long-tail problem in IAA. 首篇针对IAA中的长尾问题提出解决方案的工作

Notifications You must be signed in to change notification settings

woshidandan/Long-Tail-image-aesthetics-and-quality-assessment

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Long-Tail-image-aesthetics-and-quality-assessment

ICML2024: First work to propose a solution to the long-tail problem in IAA. 首篇针对IAA中的长尾问题提出解决方案的工作

License Framework

[国内的小伙伴可以看这]This repo contains the official implementation of ELTA of the ICML 2024 paper.

ELTA: An Enhancer against Long-Tail for Aesthetics-oriented Models

Limin Liu*, Shuai He*, Anlong Ming*, Rui Xie, Huadong Ma

Beijing University of Posts and Telecommunications, *Equal contribution


Introduction

Real-world datasets often exhibit long-tailed distributions, compromising the generalization and fairness of learning-based models. This issue is particularly pronounced in Image Aesthetics Assessment (IAA) tasks, where such imbalance is difficult to mitigate due to a severe distribution mismatch between features and labels, as well as the great sensitivity of aesthetics to image variations. To address these issues, we propose an Enhancer against Long-Tail for Aesthetics-oriented models (ELTA). ELTA first utilizes a dedicated mixup technique to enhance minority feature representation in high-level space while preserving their intrinsic aesthetic qualities. Next, it aligns features and labels through a similarity consistency approach, effectively alleviating the distribution mismatch. Finally, ELTA adopts a specific strategy to refine the output distribution, thereby enhancing the quality of pseudo-labels.

Environment Installation

  • einops==0.4.1
  • matplotlib==3.3.4
  • nni==2.6.1
  • numpy==1.19.5
  • pandas==1.1.5
  • Pillow==10.2.0
  • scikit_learn==1.4.0
  • scipy==1.5.4
  • timm==0.6.12
  • torch==1.10.1
  • torchvision==0.11.2
  • tqdm==4.64.1

Model training

python main.py --csv_path           [dataset annotation file path]
               --dataset_path       [dataset image path]
               --mixup              # optional, enable TFA module
               --simloss_weight 1   # optional, enable FLSA module and specify weight
               ...                  # other arguments

checkpoint file url: https://drive.google.com/file/d/1pA7kOCPHEUR5oNnocBZHH41Erud9Y30S/view?usp=drive_link

Model evaluation

python main.py -e                   [dataset annotation file path]
               --test_dataset_path  [dataset image path]
               --resume             [checkpoint path]   # required!
               ...                  # other arguments

Model self-training (after the evaluation)

python main.py --st                 # enable self-training
               ...                  # other arguments

Recommended: use the NNI for automatic parameter tuning

# Modify the 'trial_command' and 'search_space' in the file 'main_nni.py'
python main_nni.py

If you find our work is useful, pleaes cite our paper:

@inproceedings{liuelta,
  title={ELTA: An Enhancer against Long-Tail for Aesthetics-oriented Models},
  author={Liu, Limin and He, Shuai and Ming, Anlong and Xie, Rui and Ma, Huadong},
  booktitle={Forty-first International Conference on Machine Learning}
}

Related Work from Our Group

🎁 Projects 📚 Publication 🌈 Content ⭐ Stars
Attacker Against IAA Model【美学模型的攻击和安全评估框架】 TIP 2025 Code, Dataset Stars
Personalized Aesthetics Assessment【个性化美学评估新范式】 CVPR 2025 Code, Dataset Stars
Pixel-level image exposure assessment【首个像素级曝光评估】 NIPS 2024 Code, Dataset Stars
Long-tail solution for image aesthetics assessment【美学评估数据不平衡解决方案】 ICML 2024 Code Stars
CLIP-based image aesthetics assessment【基于CLIP多因素色彩美学评估】 Information Fusion 2024 Code, Dataset Stars
Compare-based image aesthetics assessment【基于对比学习的多因素美学评估】 ACMMM 2024 Code Stars
Image color aesthetics assessment【首个色彩美学评估】 ICCV 2023 Code, Dataset Stars
Image aesthetics assessment【通用美学评估】 ACMMM 2023 Code Stars
Theme-oriented image aesthetics assessment【首个多主题美学评估】 IJCAI 2022 Code, Dataset Stars
Select prompt based on image aesthetics assessment【基于美学评估的提示词筛选】 IJCAI 2024 Code Stars
Motion rhythm synchronization with beats【动作与韵律对齐】 IJCAI 2024 Code, Dataset Stars
Champion Solution for AIGC Image Quality Assessment【NTIRE AIGC图像质量评估赛道冠军】 CVPRW NTIRE 2024 Code Stars

About

🔥[ICML 2024, Official Code] First work to propose a solution to the long-tail problem in IAA. 首篇针对IAA中的长尾问题提出解决方案的工作

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages