The code has been successfully tested on Ubuntu 22.04.
Create Conda Environment
$ conda create -n yolov8 python=3.10 -y
$ conda activate yolov8
$ https://github.com/wish44165/iAutolabeling
$ cd iAutolabeling/
$ pip install ultralytics
Commands
$ for i in `seq 0 9`; do python main.py --curr_iter ${i} | tee iterLog${i}.txt; done
Folder Structure
ICME2024/
├── datasets/
└── v0/
├── images/
├── train/
└── val/
└── labels/
├── train/
└── val/
└── src/
└── iAutolabeling/
├── facial.yaml
└── main.py
ICME2024/
├── datasets/
├── v0/
├── images/
├── train/
└── val/
└── labels/
├── train/
└── val/
└── v1/, v2/, ...
├── src/
└── iAutolabeling/
├── facial.yaml
├── main.py
├── facial_v1.yaml, facial_v2.yaml, ...
├── iterLog0.txt, iterLog1.txt, ...
└── runs/
└── facial/
├── train/, train2/, ...
└── predict/, predict2/, predict3/, predict4/, ...
@misc{chen2024iterative,
title={Iterative Refinement Strategy for Automated Data Labeling: Facial Landmark Diagnosis in Medical Imaging},
author={Yu-Hsi Chen},
year={2024},
eprint={2404.05348},
archivePrefix={arXiv},
primaryClass={cs.CV}
}