Skip to content

wentao-hu/HDPMF

Repository files navigation

HDPMF

This is our implementation for dencentralized matrix factorization with heterogeneous differential privacy.

How to run

  1. Download datasets
  1. Preprocess datasets and put them in the folder /Data
  • For default setting or changing hyperparmeters experiments
python dataprocess_for_default.py 
  • For changing dataset sparsity experiments
python dataprocess_for_sparsity.py 
  1. Run model
  • Run Our model HDPMF :
python mf_hdp.py --data Data/ml-1m  --lr 0.01 --embedding_dim 10 --regularization 0.01  --stddev 0.1
  • Run baseline method PDPMF:
python mf_sampling.py --data Data/ml-1m  --lr 0.01 --embedding_dim 10 --regularization 0.01  --stddev 0.1
  • Run original MF without any noise:
python mf_nonprivate.py --data Data/ml-1m  --lr 0.01 --embedding_dim 10 --regularization 0.01 --stddev 0.1

Requirements

python: 3.8
sklearn: 1.0.2

Code Reference

About

implementation for "dencentralized matrix factorization with heterogeneous differential privacy"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages