Implementation for the paper: Reconstructing In-the-Wild Open-Vocabulary Human-Object Interactions
.
- [2025/03/29] Release Open3DHOI dataset.
- Pipeline for automatic coarse annotation.
- Code for HOI-Gaussian Optimizer.
You can download our Open3DHOI dataset from huggingface. The Dataset Structure is as follow:
- motorcycle
- HICO_train2015_00013672
- smplx_parameters.json # SMPL-X parameters
- h_mesh.obj # Human mesh
- object_mesh.obj # Object mesh
- image.jpg # Image
- person_mask.png # Person mask save as grayscale image
- object_mask.png # Object mask save as grayscale image
- depth.png # Depth generated by ZoeDepth
- box_annotation.json # Bounding box annotation for human and object
conda create -n open3dhoi python=3.10
conda activate open3dhoi
## install cuda and pytorch following InstantMesh
# Install the correct version of CUDA
conda install cuda -c nvidia/label/cuda-12.1.0
# You may need to install another xformers version if you use a different PyTorch version
pip install torch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 --index-url https://download.pytorch.org/whl/cu121
pip install xformers==0.0.22.post7
# Initialize and update git submodules
git submodule update --init --recursive
pip install submodules/diff-gaussian-rasterization
pip install submodules/simple-knn
pip install --upgrade https://github.com/unlimblue/KNN_CUDA/releases/download/0.2/KNN_CUDA-0.2-py3-none-any.whl
pip install submodules/multiperson/sdf
pip install -r requirements.txt
- Install pytorch3d from https://github.com/facebookresearch/pytorch3d
- download SMPL-X model from https://smpl-x.is.tue.mpg.de/ and put it in /HOIGaussian/data
cd /HOIGaussian
mkdir ./output
sh test.sh
you can see the results in /HOIGaussian/output/
@misc{wen20253dhoi,
title={Reconstructing In-the-Wild Open-Vocabulary Human-Object Interactions},
author={Boran Wen and Dingbang Huang and Zichen Zhang and Jiahong Zhou and Jianbin Deng and Jingyu Gong and Yulong Chen and Lizhuang Ma and Yong-Lu Li},
year={2025},
eprint={2503.15898},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2503.15898},
}