A web-based Monte Carlo simulation tool that allows users to define variables with different probability distributions, create formulas, and analyze simulation results with visualizations.
-
Define multiple random variables with various distribution types:
- Normal distribution
- Uniform distribution
- Triangular distribution
- Log-normal distribution
- Beta distribution
- Constant values
-
Create formulas using defined variables
-
Run Monte Carlo simulations with configurable number of iterations
-
Visualize results with:
- Probability distribution histograms
- Cumulative distribution function (CDF) curves
- Sensitivity analysis
- Scatter plots to explore variable relationships
- Statistical summaries
-
Save and load simulation scenarios
- Clone the repository:
git clone https://github.com/yourusername/monte-carlo-simulator.git
cd monte-carlo-simulator
- Create and activate a virtual environment (optional but recommended):
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
- Install dependencies:
pip install -r requirements.txt
- Run the application:
python app.py
- Open your browser and navigate to:
http://127.0.0.1:5000/
- Define Variables: Click "Add Variable" to create random variables with different distribution types
- Create Formulas: Define mathematical formulas using your variables
- Set Simulation Parameters: Choose the number of simulation iterations
- Run Simulation: Click "Run Simulation" to execute the Monte Carlo analysis
- View Results: Explore the generated visualizations and statistical data
- Save/Load Scenarios: Save your configurations for later use
- Project cost estimation with uncertainty
- Risk analysis for financial investments
- Engineering reliability assessments
- Supply chain optimization
- Portfolio risk management
- Sales forecasting with multiple variables
- Backend: Python, Flask, NumPy, SciPy, Pandas
- Frontend: HTML, CSS, JavaScript, Bootstrap, Plotly.js, Chart.js
This project is licensed under the MIT License - see the LICENSE file for details.