Skip to content

walk4rever/MonteCarlo

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Monte Carlo Simulator

A web-based Monte Carlo simulation tool that allows users to define variables with different probability distributions, create formulas, and analyze simulation results with visualizations.

Features

  • Define multiple random variables with various distribution types:

    • Normal distribution
    • Uniform distribution
    • Triangular distribution
    • Log-normal distribution
    • Beta distribution
    • Constant values
  • Create formulas using defined variables

  • Run Monte Carlo simulations with configurable number of iterations

  • Visualize results with:

    • Probability distribution histograms
    • Cumulative distribution function (CDF) curves
    • Sensitivity analysis
    • Scatter plots to explore variable relationships
    • Statistical summaries
  • Save and load simulation scenarios

Installation

  1. Clone the repository:
git clone https://github.com/yourusername/monte-carlo-simulator.git
cd monte-carlo-simulator
  1. Create and activate a virtual environment (optional but recommended):
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate
  1. Install dependencies:
pip install -r requirements.txt
  1. Run the application:
python app.py
  1. Open your browser and navigate to:
http://127.0.0.1:5000/

Usage

  1. Define Variables: Click "Add Variable" to create random variables with different distribution types
  2. Create Formulas: Define mathematical formulas using your variables
  3. Set Simulation Parameters: Choose the number of simulation iterations
  4. Run Simulation: Click "Run Simulation" to execute the Monte Carlo analysis
  5. View Results: Explore the generated visualizations and statistical data
  6. Save/Load Scenarios: Save your configurations for later use

Example Use Cases

  • Project cost estimation with uncertainty
  • Risk analysis for financial investments
  • Engineering reliability assessments
  • Supply chain optimization
  • Portfolio risk management
  • Sales forecasting with multiple variables

Technologies Used

  • Backend: Python, Flask, NumPy, SciPy, Pandas
  • Frontend: HTML, CSS, JavaScript, Bootstrap, Plotly.js, Chart.js

License

This project is licensed under the MIT License - see the LICENSE file for details.

About

A general MonteCarlo Simulator with Web UI for users to evaluate the risks.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published