Skip to content

[Model] Replace Mamba2 RMSNorm Gated with Fused Triton Kernel #20839

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 5 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
21 changes: 8 additions & 13 deletions vllm/model_executor/layers/mamba/mamba_mixer2.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,7 @@
extra_groups_for_head_shards, get_mamba_state_shape)
from vllm.model_executor.layers.mamba.ops.causal_conv1d import (
causal_conv1d_fn, causal_conv1d_update)
from vllm.model_executor.layers.mamba.ops.layernorm_gated import rms_norm_gated
from vllm.model_executor.layers.mamba.ops.mamba_ssm import (
selective_state_update)
from vllm.model_executor.layers.mamba.ops.ssd_combined import (
Expand Down Expand Up @@ -133,21 +134,15 @@ def forward_cuda(
return x * nn.functional.silu(gate.to(
torch.float32)).to(input_dtype)

if self.tp_size > 1 or self.n_groups != 1:
if (((self.n_groups % self.tp_size) != 0) or self.n_groups != 1):
return self.forward_native(x, gate)

from vllm import _custom_ops as ops

# cast x and gate to float32 before silu
out = torch.empty_like(x)
y = x * nn.functional.silu(gate.to(torch.float32))
ops.rms_norm(
out,
y.to(x.dtype),
self.weight.data,
self.variance_epsilon,
)
return out
return rms_norm_gated(x,
self.weight.data,
bias=None,
z=gate,
eps=self.variance_epsilon,
norm_before_gate=False)


def mamba_v2_sharded_weight_loader(
Expand Down
168 changes: 168 additions & 0 deletions vllm/model_executor/layers/mamba/ops/layernorm_gated.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,168 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# Copyright (c) 2024, Tri Dao.
# Adapted from https://github.com/state-spaces/mamba/blob/60dadf2e0ee730ac337035d5533de10bc26e4847/mamba_ssm/ops/triton/layernorm_gated.py

import torch

from vllm.triton_utils import tl, triton


@triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None})
@triton.heuristics({"HAS_Z": lambda args: args["Z"] is not None})
@triton.jit
def _layer_norm_fwd_1pass_kernel(
X, # pointer to the input
Y, # pointer to the output
W, # pointer to the weights
B, # pointer to the biases
Z, # pointer to the other branch
Mean, # pointer to the mean
Rstd, # pointer to the 1/std
stride_x_row: tl.int64,
stride_y_row: tl.int64,
stride_z_row: tl.int64,
M: tl.int64, # number of rows in X
N: tl.int64, # number of columns in X
eps, # epsilon to avoid division by zero
BLOCK_N: tl.constexpr,
HAS_BIAS: tl.constexpr,
HAS_Z: tl.constexpr,
NORM_BEFORE_GATE: tl.constexpr,
IS_RMS_NORM: tl.constexpr,
):
# Map the program id to the row of X and Y it should compute.
row = tl.program_id(0)
group = tl.program_id(1)
X += row * stride_x_row + group * N
Y += row * stride_y_row + group * N
if HAS_Z:
Z += row * stride_z_row + group * N
if not IS_RMS_NORM:
Mean += group * M
Rstd += group * M
W += group * N
if HAS_BIAS:
B += group * N
# Compute mean and variance
cols = tl.arange(0, BLOCK_N)
x = tl.load(X + cols, mask=cols < N, other=0.).to(tl.float32)
if HAS_Z and not NORM_BEFORE_GATE:
z = tl.load(Z + cols, mask=cols < N).to(tl.float32)
x *= z * tl.sigmoid(z)
if not IS_RMS_NORM:
mean = tl.sum(x, axis=0) / N
tl.store(Mean + row, mean)
xbar = tl.where(cols < N, x - mean, 0.)
var = tl.sum(xbar * xbar, axis=0) / N
else:
xbar = tl.where(cols < N, x, 0.)
var = tl.sum(xbar * xbar, axis=0) / N
rstd = 1 / tl.sqrt(var + eps)
tl.store(Rstd + row, rstd)
# Normalize and apply linear transformation
mask = cols < N
w = tl.load(W + cols, mask=mask).to(tl.float32)
if HAS_BIAS:
b = tl.load(B + cols, mask=mask).to(tl.float32)
x_hat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd
y = x_hat * w + b if HAS_BIAS else x_hat * w
if HAS_Z and NORM_BEFORE_GATE:
z = tl.load(Z + cols, mask=mask).to(tl.float32)
y *= z * tl.sigmoid(z)
# Write output
tl.store(Y + cols, y, mask=mask)


def _layer_norm_fwd(x,
weight,
bias,
eps,
z=None,
out=None,
group_size=None,
norm_before_gate=True,
is_rms_norm=False):
M, N = x.shape
if group_size is None:
group_size = N
assert N % group_size == 0
ngroups = N // group_size
assert x.stride(-1) == 1
if z is not None:
assert z.stride(-1) == 1
assert z.shape == (M, N)
assert weight.shape == (N, )
assert weight.stride(-1) == 1
if bias is not None:
assert bias.stride(-1) == 1
assert bias.shape == (N, )
# allocate output
if out is not None:
assert out.shape == x.shape
else:
out = torch.empty_like(x)
assert out.stride(-1) == 1
mean = torch.empty((ngroups * M, ), dtype=torch.float32,
device=x.device) if not is_rms_norm else None
rstd = torch.empty((ngroups * M, ), dtype=torch.float32, device=x.device)
# Less than 64KB per feature: enqueue fused kernel
MAX_FUSED_SIZE = 65536 // x.element_size()
BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(group_size))
if group_size > BLOCK_N:
raise RuntimeError(
"This layer norm doesn't support feature dim >= 64KB.")
# heuristics for number of warps
num_warps = min(max(BLOCK_N // 256, 1), 8)
grid = (M, ngroups)
with torch.cuda.device(x.device.index):
_layer_norm_fwd_1pass_kernel[grid](x,
out,
weight,
bias,
z,
mean,
rstd,
x.stride(0),
out.stride(0),
z.stride(0) if z is not None else 0,
M,
group_size,
eps,
BLOCK_N=BLOCK_N,
NORM_BEFORE_GATE=norm_before_gate,
IS_RMS_NORM=is_rms_norm,
num_warps=num_warps)
return out, mean, rstd


def rms_norm_gated(x,
weight,
bias,
z=None,
eps=1e-6,
group_size=None,
norm_before_gate=True):
x_shape_og = x.shape
# reshape input data into 2D tensor
x = x.reshape(-1, x.shape[-1])
if x.stride(-1) != 1:
x = x.contiguous()
if z is not None:
assert z.shape == x_shape_og
z = z.reshape(-1, z.shape[-1])
if z.stride(-1) != 1:
z = z.contiguous()
weight = weight.contiguous()
if bias is not None:
bias = bias.contiguous()
y, _, _ = _layer_norm_fwd(x,
weight,
bias,
eps,
z=z,
group_size=group_size,
norm_before_gate=norm_before_gate,
is_rms_norm=True)

return y.reshape(x_shape_og)