Skip to content

PrefixRepetitionRandomDataset #20638

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Draft
wants to merge 2 commits into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
64 changes: 64 additions & 0 deletions benchmarks/benchmark_dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -1166,3 +1166,67 @@ def sample(
)
self.maybe_oversample_requests(sampled_requests, num_requests)
return sampled_requests


# -----------------------------------------------------------------------------
# Prefix Repetition Dataset Implementation
# -----------------------------------------------------------------------------


class PrefixRepetitionRandomDataset(BenchmarkDataset):
# Default values copied from benchmark_serving.py for the repeated prefix dataset.
DEFAULT_PREFIX_LEN = 256
DEFAULT_SUFFIX_LEN = 256
DEFAULT_NUM_PREFIXES = 10
DEFAULT_OUTPUT_LEN = 128

def __init__(
self,
**kwargs,
) -> None:
super().__init__(**kwargs)

def sample(
self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
prefix_len: int = DEFAULT_PREFIX_LEN,
suffix_len: int = DEFAULT_SUFFIX_LEN,
num_prefixes: int = DEFAULT_NUM_PREFIXES,
output_len: int = DEFAULT_OUTPUT_LEN,
**kwargs,
) -> list[SampleRequest]:
vocab_size = tokenizer.vocab_size
prompts_per_prefix = num_requests // num_prefixes

def _generate_random_text_part(length: int) -> tuple[str, list[int]]:
token_ids = np.random.randint(0, vocab_size, size=length).tolist()
decoded_text = tokenizer.decode(token_ids)
# Re-encoding and decoding is necessary to ensure the final
# token count is correct.
re_encoded_ids = tokenizer.encode(decoded_text, add_special_tokens=False)[
:length
]
final_text = tokenizer.decode(re_encoded_ids)
return final_text, re_encoded_ids

requests = []
for _ in range(num_prefixes):
decoded_prefix, re_encoded_prefix = _generate_random_text_part(prefix_len)

for _ in range(prompts_per_prefix):
decoded_suffix, re_encoded_suffix = _generate_random_text_part(
suffix_len
)

prompt = decoded_prefix + decoded_suffix
prompt_len = len(re_encoded_prefix) + len(re_encoded_suffix)
requests.append(
SampleRequest(
prompt=prompt,
prompt_len=prompt_len,
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

if you sum them in the str space it may not preserve the same sum of prefix and decode relation in the token space.

expected_output_len=output_len,
)
)

return requests
51 changes: 50 additions & 1 deletion benchmarks/benchmark_serving.py
Original file line number Diff line number Diff line change
Expand Up @@ -66,6 +66,7 @@
InstructCoderDataset,
MTBenchDataset,
NextEditPredictionDataset,
PrefixRepetitionRandomDataset,
RandomDataset,
SampleRequest,
ShareGPTDataset,
Expand Down Expand Up @@ -852,6 +853,16 @@ def main(args: argparse.Namespace):
output_len=args.random_output_len,
range_ratio=args.random_range_ratio,
),
"prefix_repetition": lambda: PrefixRepetitionRandomDataset(
random_seed=args.seed, dataset_path=args.dataset_path
).sample(
tokenizer=tokenizer,
num_requests=args.num_prompts,
prefix_len=args.repeated_prefix_prefix_len,
suffix_len=args.repeated_prefix_suffix_len,
num_prefixes=args.repeated_prefix_num_prefixes,
output_len=args.repeated_prefix_output_len,
),
}

try:
Expand Down Expand Up @@ -1023,7 +1034,15 @@ def create_argument_parser():
"--dataset-name",
type=str,
default="sharegpt",
choices=["sharegpt", "burstgpt", "sonnet", "random", "hf", "custom"],
choices=[
"sharegpt",
"burstgpt",
"sonnet",
"random",
"hf",
"custom",
"prefix_repetition",
],
help="Name of the dataset to benchmark on.",
)
parser.add_argument(
Expand Down Expand Up @@ -1271,6 +1290,36 @@ def create_argument_parser():
),
)

repeated_prefix_group = parser.add_argument_group("repeated prefix dataset options")
repeated_prefix_group.add_argument(
"--repeated-prefix-prefix-len",
type=int,
default=256,
help="Number of prefix tokens per request, used only for repeated "
"prefix dataset.",
)
repeated_prefix_group.add_argument(
"--repeated-prefix-suffix-len",
type=int,
default=256,
help="Number of suffix tokens per request, used only for repeated "
"prefix dataset. Total input length is prefix_len + suffix_len.",
)
repeated_prefix_group.add_argument(
"--repeated-prefix-num-prefixes",
type=int,
default=10,
help="Number of prefixes to generate, used only for repeated prefix "
"dataset. Prompts per prefix is num_requests // num_prefixes.",
)
repeated_prefix_group.add_argument(
"--repeated-prefix-output-len",
type=int,
default=128,
help="Number of output tokens per request, used only for repeated "
"prefix dataset.",
)

hf_group = parser.add_argument_group("hf dataset options")
hf_group.add_argument(
"--hf-subset", type=str, default=None, help="Subset of the HF dataset."
Expand Down