Skip to content

[WIP][Hardware][CPU] testing branch for mlperf #20473

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Draft
wants to merge 19 commits into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion .buildkite/scripts/hardware_ci/run-cpu-test.sh
Original file line number Diff line number Diff line change
Expand Up @@ -72,7 +72,7 @@ function cpu_tests() {
set -e
export VLLM_CPU_KVCACHE_SPACE=10
export VLLM_CPU_OMP_THREADS_BIND=$1
python3 -m vllm.entrypoints.openai.api_server --model facebook/opt-125m --dtype half &
python3 -m vllm.entrypoints.openai.api_server --model facebook/opt-125m --dtype half -O3 &
timeout 600 bash -c 'until curl localhost:8000/v1/models; do sleep 1; done' || exit 1
python3 benchmarks/benchmark_serving.py \
--backend vllm \
Expand Down
20 changes: 20 additions & 0 deletions cmake/cpu_extension.cmake
Original file line number Diff line number Diff line change
Expand Up @@ -95,12 +95,21 @@ if (AVX512_FOUND AND NOT AVX512_DISABLED)
if (CMAKE_CXX_COMPILER_ID STREQUAL "GNU" AND
CMAKE_CXX_COMPILER_VERSION VERSION_GREATER_EQUAL 12.3)
list(APPEND CXX_COMPILE_FLAGS "-mavx512bf16")
set(ENABLE_AVX512BF16 ON)
else()
set(ENABLE_AVX512BF16 OFF)
message(WARNING "Disable AVX512-BF16 ISA support, requires gcc/g++ >= 12.3")
endif()
else()
set(ENABLE_AVX512BF16 OFF)
message(WARNING "Disable AVX512-BF16 ISA support, no avx512_bf16 found in local CPU flags." " If cross-compilation is required, please set env VLLM_CPU_AVX512BF16=1.")
endif()

find_isa(${CPUINFO} "avx512_vnni" AVX512VNNI_FOUND)
if (AVX512VNNI_FOUND)
list(APPEND CXX_COMPILE_FLAGS "-mavx512vnni")
set(ENABLE_AVX512VNNI ON)
endif()

elseif (AVX2_FOUND)
list(APPEND CXX_COMPILE_FLAGS "-mavx2")
Expand Down Expand Up @@ -224,6 +233,17 @@ if (AVX512_FOUND AND NOT AVX512_DISABLED)
"csrc/cpu/quant.cpp"
"csrc/cpu/shm.cpp"
${VLLM_EXT_SRC})
if (ENABLE_AVX512BF16 AND ENABLE_AVX512VNNI)
set(VLLM_EXT_SRC
"csrc/cpu/sgl-kernels/gemm.cpp"
"csrc/cpu/sgl-kernels/gemm_int8.cpp"
"csrc/cpu/sgl-kernels/gemm_fp8.cpp"
"csrc/cpu/sgl-kernels/moe.cpp"
"csrc/cpu/sgl-kernels/moe_int8.cpp"
"csrc/cpu/sgl-kernels/moe_fp8.cpp"
${VLLM_EXT_SRC})
add_compile_definitions(-DCPU_CAPABILITY_AVX512)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

high

There are inconsistent preprocessor definitions for CPU_CAPABILITY_AVX512 across the codebase, which could lead to incorrect builds or runtime behavior.

  • cmake/cpu_extension.cmake:245: Defines CPU_CAPABILITY_AVX512 if ENABLE_AVX512BF16 AND ENABLE_AVX512VNNI.
  • csrc/cpu/sgl-kernels/vec.h:3-5: Defines CPU_CAPABILITY_AVX512 if __AVX512F__ && __AVX512BF16__ && __AMX_BF16__.
  • csrc/cpu/torch_bindings.cpp:242: Guards new op registrations with #if defined (__AVX512BF16__) && defined (__AVX512F__) && defined (__AVX512VNNI__).

These conditions are different. For example, the vec.h definition depends on __AMX_BF16__ which is not checked in CMake, while the CMake logic depends on AVX512VNNI which is not in the vec.h condition.

To ensure correctness and maintainability, these definitions should be unified. I recommend using a single source of truth for this capability check, probably in this CMake file, and then using that definition throughout the C++ code. The definition in vec.h should probably be guarded with #ifndef CPU_CAPABILITY_AVX512 to avoid redefinition warnings and use the CMake-provided definition.

endif()
elseif(POWER10_FOUND)
set(VLLM_EXT_SRC
"csrc/cpu/quant.cpp"
Expand Down
233 changes: 233 additions & 0 deletions csrc/cpu/sgl-kernels/common.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,233 @@
#pragma once

#include <ATen/ATen.h>
#include <ATen/Parallel.h>
#include <ATen/record_function.h>

#if defined(_OPENMP)
#include <omp.h>
#endif

namespace {

// dispatch bool
#define AT_DISPATCH_BOOL(BOOL_V, BOOL_NAME, ...) \
[&] { \
if (BOOL_V) { \
constexpr bool BOOL_NAME = true; \
return __VA_ARGS__(); \
} else { \
constexpr bool BOOL_NAME = false; \
return __VA_ARGS__(); \
} \
}()

// dispatch: bfloat16, float16, int8_t, fp8_e4m3
#define CPU_DISPATCH_PACKED_TYPES(TYPE, ...) \
[&] { \
switch (TYPE) { \
case at::ScalarType::BFloat16 : { \
using packed_t = at::BFloat16; \
return __VA_ARGS__(); \
} \
case at::ScalarType::Half: { \
using packed_t = at::Half; \
return __VA_ARGS__(); \
} \
case at::ScalarType::Char : { \
using packed_t = int8_t; \
return __VA_ARGS__(); \
} \
case at::ScalarType::Float8_e4m3fn : { \
using packed_t = at::Float8_e4m3fn; \
return __VA_ARGS__(); \
} \
default: \
TORCH_CHECK(false, "Unsupported floating data type.\n"); \
} \
}()

#define UNUSED(x) (void)(x)

#define CHECK_CPU(x) TORCH_CHECK(x.device().type() == at::kCPU, #x " must be a CPU tensor")

#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
#define CHECK_LAST_DIM_CONTIGUOUS(x) \
TORCH_CHECK(x.strides()[x.strides().size() - 1] == 1, #x "must be contiguous at last dimention")

#define CHECK_INPUT(x) \
CHECK_CPU(x); \
CHECK_CONTIGUOUS(x)
#define CHECK_LAST_DIM_CONTIGUOUS_INPUT(x) \
CHECK_CPU(x); \
CHECK_LAST_DIM_CONTIGUOUS(x)

#define CHECK_DIM(d, x) TORCH_CHECK(x.dim() == d, #x " must be a " #d "D tensor")

#define CHECK_EQ(a, b) TORCH_CHECK((a) == (b), "CHECK_EQ(" #a ", " #b ") failed. ", a, " vs ", b)

// parallel routines
constexpr int GRAIN_SIZE = 1024;

template <typename T, typename std::enable_if<std::is_integral<T>::value, int>::type = 0>
inline T div_up(T x, T y) { return (x + y - 1) / y; }

template <typename T>
inline void balance211(T n, T nth, T ith, T& n_start, T& n_end) {
#if 0
// onednn partition pattern
T& n_my = n_end;
if (nth <= 1 || n == 0) {
n_start = 0;
n_my = n;
} else {
T n1 = div_up(n, nth);
T n2 = n1 - 1;
T T1 = n - n2 * nth;
n_my = ith < T1 ? n1 : n2;
n_start = ith <= T1 ? ith*n1 : T1 * n1 + (ith - T1) * n2;
}
n_end += n_start;
#else
// pytorch aten partition pattern
T n_my = div_up(n, nth);
n_start = ith * n_my;
n_end = std::min(n_start + n_my, n);
#endif
}

template <typename func_t>
inline void parallel_for(int n, const func_t& f) {
#if defined(_OPENMP)
#pragma omp parallel
{
int nth = omp_get_num_threads();
int ith = omp_get_thread_num();
int tbegin, tend;
balance211(n, nth, ith, tbegin, tend);
f(tbegin, tend);
}
#else
f(0, n);
#endif
}

// for 1d parallel, use `actual_nth`
// for 2d parallel, use even nths, e.g. 43->42
int inline adjust_num_threads(int m) {
int actual_nth = at::get_num_threads();
if (m == 1) {
return actual_nth;
}
return std::max(1, (actual_nth >> 1) * 2);
}

template <typename func_t>
inline void parallel_2d(int m, int n, const func_t& f) {

// make sure we have even num_threads
int nth = adjust_num_threads(m);

// [NOTE] thread blocking:
//
// 1) prefer square block per thread
// 2) use even number of CPU cores
// 3) use all `num_threads` cores
//
// we have:
// TM * TN = T
// BM / TM = BN / TN
// then:
// TM = ((BM / BN) * T) ^ 0.5
//
float r = float(m) / n;
int nth_m = std::ceil(std::sqrt(r * nth));
int nth_n = 1;
for (; nth_m > 0; --nth_m) {
nth_n = nth / nth_m;
if (nth_m * nth_n == nth) {
break;
}
}

#if defined(_OPENMP)
#pragma omp parallel num_threads(nth)
{
int ith = omp_get_thread_num();
int ith_m = ith / nth_n;
int ith_n = ith % nth_n;

int thread_block_m = div_up(m, nth_m);
int thread_block_n = div_up(n, nth_n);

int begin_m = ith_m * thread_block_m;
int end_m = std::min(m, begin_m + thread_block_m);
int begin_n = ith_n * thread_block_n;
int end_n = std::min(n, begin_n + thread_block_n);

f(begin_m, end_m, begin_n, end_n);
}
#else
f(0, m, 0, n);
#endif
}

template <typename T>
int get_cache_blocks(int BLOCK_SIZE, int K) {
// L2 2MB and ratio of 50%
const int L2_size = 2048 * 1024 >> 1;
return std::max(1, int(L2_size / (BLOCK_SIZE * K * sizeof(T))));
}

// data indexing for dimension collapse
template <typename T>
inline T data_index_init(T offset) {
return offset;
}

template <typename T, typename... Args>
inline T data_index_init(T offset, T& x, const T& X, Args&&... args) {
offset = data_index_init(offset, std::forward<Args>(args)...);
x = offset % X;
return offset / X;
}

inline bool data_index_step() {
return true;
}

template <typename T, typename... Args>
inline bool data_index_step(T& x, const T& X, Args&&... args) {
if (data_index_step(std::forward<Args>(args)...)) {
x = ((x + 1) == X) ? 0 : (x + 1);
return x == 0;
}
return false;
}

// forced unroll for perf critical path

#if __has_attribute(always_inline)
#define ALWAYS_INLINE __attribute__((__always_inline__)) inline
#else
#define ALWAYS_INLINE inline
#endif

template <int n>
struct Unroll {
template <typename Func, typename... Args>
ALWAYS_INLINE void operator()(const Func& f, Args... args) const {
Unroll<n - 1>{}(f, args...);
f(std::integral_constant<int, n - 1>{}, args...);
}
};

template <>
struct Unroll<1> {
template <typename Func, typename... Args>
ALWAYS_INLINE void operator()(const Func& f, Args... args) const {
f(std::integral_constant<int, 0>{}, args...);
}
};

} // anonymous namespace
Loading