Skip to content

Commit 3bc448b

Browse files
committed
final review
1 parent 49f18d7 commit 3bc448b

File tree

2 files changed

+31
-28
lines changed

2 files changed

+31
-28
lines changed

experiment/posttest.json

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -56,18 +56,18 @@
5656
{
5757
"question": "4. In an n-type semiconductor in the extrinsic region, given that ND = 5 × 10<sup>16</sup> , and ni = 9.65 × 10<sup>15</sup> m⁻³, what is the hole concentration p₀?",
5858
"answers": {
59-
"a": "1.7 × 10<sup>13</sup> m⁻³",
60-
"b": "1.8 × 10<sup>15</sup> m⁻³",
61-
"c": "2.0 × 10<sup>13</sup> m⁻³",
62-
"d": "1.9 × 10<sup>15</sup> m⁻³"
59+
"a": "1.72 × 10<sup>13</sup> m⁻³",
60+
"b": "1.86 × 10<sup>15</sup> m⁻³",
61+
"c": "2.09 × 10<sup>13</sup> m⁻³",
62+
"d": "1.95 × 10<sup>15</sup> m⁻³"
6363
},
6464
"explanations": {
65-
"a": "Using the equations n₀ = ND - NA and p₀ = ni² / n₀, we calculate p₀ as [calculated_value] m⁻³, which matches option [correct_option].",
65+
"a": "Using the equations n₀ = N<sub>D</sub> and p₀ = n<sub>i</sub>² / n₀, we calculate p₀ as [calculated_value] m⁻³, which matches option [correct_option].",
6666
"b": "Using the equations n₀ = ND - NA and p₀ = ni² / n₀, we calculate p₀ as [calculated_value] m⁻³, which matches option [correct_option].",
6767
"c": "Using the equations n₀ = ND - NA and p₀ = ni² / n₀, we calculate p₀ as [calculated_value] m⁻³, which matches option [correct_option].",
6868
"d": "Using the equations n₀ = ND - NA and p₀ = ni² / n₀, we calculate p₀ as [calculated_value] m⁻³, which matches option [correct_option]."
6969
},
70-
"correctAnswer": "d",
70+
"correctAnswer": "b",
7171
"difficulty": "beginner"
7272
}
7373
]

experiment/theory.md

Lines changed: 25 additions & 22 deletions
Original file line numberDiff line numberDiff line change
@@ -45,47 +45,50 @@ n = N_{C}e^{E_{f}-E_{C}/k_{B}T}\tag{3.6}
4545
$$
4646

4747
Here, N<sub>C</sub> is the effective density of states in the conduction band.
48+
$$
49+
N_{C} = 2(\frac{m^{*}_{n}k_{B}T}{2\pi\hbar^{2}})^{3/2} \tag{3.7}
50+
$$
4851

4952
Number of holes per c.c. in the valence band at energy <br>
5053
E(i.e. between E & E+dE) = g<sub>v</sub>(E)[1-f(E)]dE
5154
where
5255
$$
53-
E \leq E_{v} \tag{3.7}
56+
E \leq E_{v} \tag{3.8}
5457
$$
5558

5659
$$
57-
p = \int_{0}^{E_{v}} g_{v}(E)[1-f(E)]dE \tag{3.8}
60+
p = \int_{0}^{E_{v}} g_{v}(E)[1-f(E)]dE \tag{3.9}
5861
$$
5962
This can be approximated for
6063
$$
61-
E_{F} - E_{V} \geq 3kT \tag{3.9}
64+
E_{F} - E_{V} \geq 3kT \tag{3.10}
6265
$$
6366
by,
6467
$$
65-
p = N_{V}e^{E_{V}-E_{f}/k_{B}T} \tag{3.10}
68+
p = N_{V}e^{E_{V}-E_{f}/k_{B}T} \tag{3.11}
6669
$$
6770

6871
where, N<sub>v</sub> is the effective density of stes in the valence band
6972
$$
70-
N_{V} = 2(\frac{m_{v}^{2}k_{B}T}{2\pi \hbar^{2}})^{3/2} \tag{3.11}
73+
N_{V} = 2(\frac{m_{v}^{2}k_{B}T}{2\pi \hbar^{2}})^{3/2} \tag{3.12}
7174
$$
7275

7376
For an intrinsic material(not doped), the electron concentration is,
7477
$$
75-
n_{i} = N_{C}e^{E_{i}-E_{C}/k_{B}T} \tag{3.12}
78+
n_{i} = N_{C}e^{E_{i}-E_{C}/k_{B}T} \tag{3.13}
7679
$$
7780
and the hole concentration is
7881
$$
79-
n_{i} = N_{V}e^{E_{V}-E_{i}/k_{B}T} \tag{3.13}
82+
n_{i} = N_{V}e^{E_{V}-E_{i}/k_{B}T} \tag{3.14}
8083
$$
8184

8285
Therefore,
8386
$$
84-
n = n_{i}e^{E_{f}-E_{i}/k_{B}T} \tag{3.14}
87+
n = n_{i}e^{E_{f}-E_{i}/k_{B}T} \tag{3.15}
8588
$$
8689
and
8790
$$
88-
p = n_{i}e^{E_{i}-E_{f}/k_{B}T}\tag{3.15}
91+
p = n_{i}e^{E_{i}-E_{f}/k_{B}T}\tag{3.16}
8992
$$
9093

9194

@@ -97,25 +100,25 @@ density of states for given energy range gives holes concentration.
97100
## Equilibrium Carrier Density Product
98101
If n<sub>o</sub> and p<sub>o</sub> are the equillibrium concentration of elevtrons and holes respectively, the product is obatined by multiplying electron and hole concentrations
99102
$$
100-
n_{o}p_{o} = N_{C}e^{E_{F}-E_{C}/k_{B}T} \cdot N_{V}e^{E_{V}-E_{F}/k_{B}T} \tag{3.16}
103+
n_{o}p_{o} = N_{C}e^{E_{F}-E_{C}/k_{B}T} \cdot N_{V}e^{E_{V}-E_{F}/k_{B}T} \tag{3.17}
101104
$$
102105

103106
$$
104-
n_{o}p_{o} = N_{C}N_{V} e^{E_{V}-E_{C}/k_{B}T} \tag{3.17}
107+
n_{o}p_{o} = N_{C}N_{V} e^{E_{V}-E_{C}/k_{B}T} \tag{3.18}
105108
$$
106109

107110
The carrier product in the left-hand-side of th ebove equation is the intrinsic(undoped) silicon carrier concentration n<sub>i</sub> and as we know bandgap energy
108111
$$
109-
E_{G} = E_{C} - E_{V} \tag{3.18}
112+
E_{G} = E_{C} - E_{V} \tag{3.19}
110113
$$
111114
Hence,
112115
$$
113-
n_{i} = \sqrt{N_{C}N_{V}} e^{-E_{G}/2k_{B}T}\tag{3.19}
116+
n_{i} = \sqrt{N_{C}N_{V}} e^{-E_{G}/2k_{B}T}\tag{3.20}
114117
$$
115118

116119
We also obtain,
117120
$$
118-
n_{i}^{2} = n_{o}p_{o}\tag{3.20}
121+
n_{i}^{2} = n_{o}p_{o}\tag{3.21}
119122
$$
120123
This equation describes the law of mass action and relates the carrier concentration in doped semiconductor to intrinsic semiconductor.
121124

@@ -124,42 +127,42 @@ For an n-type semiconductor, the fermi level is Between the intrinsic level(E<su
124127

125128
We found that the electron density can be written as-
126129
$$
127-
n_{o} = N_{C}e^{E_{F}-E_{C}/k_{B}T}\tag{3.21}
130+
n_{o} = N_{C}e^{E_{F}-E_{C}/k_{B}T}\tag{3.22}
128131
$$
129132

130133
and the hole concentration can be written as-
131134

132135
$$
133-
p_{o} = N_{V}e^{E_{V}-E_{F}/k_{B}T} \tag{3.22}
136+
p_{o} = N_{V}e^{E_{V}-E_{F}/k_{B}T} \tag{3.23}
134137
$$
135138

136139
For an intrinsic semiconductor,
137140

138141
$$
139-
n_{o} = p_{o} = n_{i} \tag{3.23}
142+
n_{o} = p_{o} = n_{i} \tag{3.24}
140143
$$
141144

142145
or,
143146
$$
144-
N_{C}e^{E_{F}-E_{C}/k_{B}T} = N_{V}e^{E_{V}-E_{F}/k_{B}T}\tag{3.24}
147+
N_{C}e^{E_{F}-E_{C}/k_{B}T} = N_{V}e^{E_{V}-E_{F}/k_{B}T}\tag{3.25}
145148
$$
146149

147150
Solving for E<sub>F</sub> = E<sub>i</sub>(the intrinsic fermi level)
148151

149152
$$
150-
E_{i} = \frac{E_{C} + E_{V}}{2} + \frac{k_{B}T}{2} ln(\frac{N_{V}}{N_{C}}) \tag{3.25}
153+
E_{i} = \frac{E_{C} + E_{V}}{2} + \frac{k_{B}T}{2} ln(\frac{N_{V}}{N_{C}}) \tag{3.26}
151154
$$
152155

153-
We find that the fermi level is not right in the middle of the conduction and the valuence band and that there is an additional correction factor. This correction depends on the effective densities of states in the valence and conduction bands.
156+
We find that the fermi level is not right in the middle of the conduction and the valence band and that there is an additional correction factor. This correction depends on the effective densities of states in the valence and conduction bands.
154157
$$
155-
E_{i} = \frac{E_{C} + E_{V}}{2} + \frac{3k_{B}T}{4} ln(\frac{m*_{p}}{m*_{n}}) \tag{3.26}
158+
E_{i} = \frac{E_{C} + E_{V}}{2} + \frac{3k_{B}T}{4} ln(\frac{m*_{p}}{m*_{n}}) \tag{3.27}
156159
$$
157160

158161
## Doping Density
159162
In a uniformly doped semiconductor, the net charge is zero(doped with neutral atoms). This is called charge neutrality.
160163

161164
$$
162-
\rho = q [p - n + N_{D}^{+} - N_{A}^{-}] = 0 \tag{3.27}
165+
\rho = q [p - n + N_{D}^{+} - N_{A}^{-}] = 0 \tag{3.28}
163166
$$
164167

165168
Dopant concentration is N<sub>D</sub> and acceptor concertation is N<sub>A</sub>. Ideally all the dopant atoms ionize and contribute electron/hole for conduction leaving behind a charged center. Let the ionized latter’s concentration be N<sub>D</sub><sup>+</sup> or N<sub>A</sub><sup>-</sup><br>

0 commit comments

Comments
 (0)