Skip to content

Commit 49f18d7

Browse files
committed
final reviews
1 parent 877d91b commit 49f18d7

File tree

2 files changed

+50
-49
lines changed

2 files changed

+50
-49
lines changed

experiment/posttest.json

Lines changed: 14 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -2,12 +2,12 @@
22
"version": 2.0,
33
"questions": [
44
{
5-
"question": "1. Given T = 300 K, m_n = 1.08 × 10^-31 kg, m_p = 0.56 × 10^-31 kg, h = 6.626 × 10^-34 J·s, E_F = 0.4 eV, E_c = 0.2 eV, and E_v = 0.1 eV, what are the electron concentration n0 and hole concentration p0?",
5+
"question": "1. Given T = 300 K, m<sub>n</sub> = 1.08 × 10<sup>-31</sup> kg, m<sub>p</sub> = 0.56 × 10<sup>-31</sup> kg, h = 6.626 × 10<sup>-34</sup> J·s, E<sub>F</sub> = 0.4 eV, E<sub>C</sub> = 0.2 eV, and E<sub>V</sub> = 0.1 eV, what are the electron concentration n0 and hole concentration p0?",
66
"answers": {
7-
"a": "n0 = 7.3 x 10^26 m^-3, p0 = 1.1 x 10^18 m^-3",
8-
"b": "n0 = 2.5 x 10^26 m^-3, p0 = 3.0 x 10^18 m^-3",
9-
"c": "n0 = 4.1 x 10^26 m^-3, p0 = 1.8 x 10^18 m^-3",
10-
"d": "n0 = 5.2 x 10^26 m^-3, p0 = 2.7 x 10^18 m^-3"
7+
"a": "n0 = 7.3 x 10<sup>26</sup> m, p0 = 1.1<sup>-3</sup> x 10<sup>18</sup> m<sup>-3</sup>",
8+
"b": "n0 = 2.5 x 10<sup>26</sup> m, p0 = 3.0<sup>-3</sup> x 10<sup>18</sup> m<sup>-3</sup>",
9+
"c": "n0 = 4.1 x 10<sup>26</sup> m, p0 = 1.8<sup>-3</sup> x 10<sup>18</sup> m<sup>-3</sup>",
10+
"d": "n0 = 5.2 x 10<sup>26</sup> m, p0 = 2.7<sup>-3</sup> x 10<sup>18</sup> m<sup>-3</sup>"
1111
},
1212

1313
"explanations": {
@@ -22,10 +22,10 @@
2222
{
2323
"question": "2. From the above values find intrinsic carrier concentration",
2424
"answers": {
25-
"a": "2.3 x 10^22 m^-3",
26-
"b": "3.0 x 10^22 m^-3",
27-
"c": "2.8 x 10^22 m^-3",
28-
"d": "2.7 x 10^22 m^-3"
25+
"a": "2.3 x 10<sup>22</sup> m<sup>-3</sup>",
26+
"b": "3.0 x 10<sup>22</sup> m<sup>-3</sup>",
27+
"c": "2.8 x 10<sup>22</sup> m<sup>-3</sup>",
28+
"d": "2.7 x 10<sup>22</sup> m<sup>-3</sup>"
2929
},
3030
"explanations": {
3131
"a": "intrinsic carrier concentration is the square root of n0*p0",
@@ -54,12 +54,12 @@
5454
"difficulty": "intermediate"
5555
},
5656
{
57-
"question": "4. In an n-type semiconductor in the extrinsic region, given that ND = 5 × 10^16 m⁻³, and ni = 9.65 × 10^15 m⁻³, what is the hole concentration p₀?",
57+
"question": "4. In an n-type semiconductor in the extrinsic region, given that ND = 5 × 10<sup>16</sup> , and ni = 9.65 × 10<sup>15</sup> m⁻³, what is the hole concentration p₀?",
5858
"answers": {
59-
"a": "1.7 × 10^13 m⁻³",
60-
"b": "1.8 × 10^15 m⁻³",
61-
"c": "2.0 × 10^13 m⁻³",
62-
"d": "1.9 × 10^15 m⁻³"
59+
"a": "1.7 × 10<sup>13</sup> m⁻³",
60+
"b": "1.8 × 10<sup>15</sup> m⁻³",
61+
"c": "2.0 × 10<sup>13</sup> m⁻³",
62+
"d": "1.9 × 10<sup>15</sup> m⁻³"
6363
},
6464
"explanations": {
6565
"a": "Using the equations n₀ = ND - NA and p₀ = ni² / n₀, we calculate p₀ as [calculated_value] m⁻³, which matches option [correct_option].",

experiment/theory.md

Lines changed: 36 additions & 35 deletions
Original file line numberDiff line numberDiff line change
@@ -3,121 +3,119 @@
33
The fermi function gives the probability of a state being occupied at equilibrium by an electron. The equation defining the probability vs energy at temperature T is given by the equation,
44

55
$$
6-
f_0(E) = \frac{1}{1+e^{E-E_{f}/k_{B}T}}
6+
f_o(E) = \frac{1}{1+e^{E-E_{f}/k_{B}T}} \tag{3.1}
77
$$
88

99
where
10-
<b>f<sub>o</sub>(E)</b> is the fremi function for a given energy level,<br>
10+
<b>f<sub>o</sub>(E)</b> is the fermi function for a given energy level,<br>
1111
<b> E<sub>f</sub> </b> is the fermi level,<br>
1212
<b> k<sub>B</sub> </b> is the Botzmann's constant whose value is 1.38* 10<sup>-23</sup> J/K and <br>
1313
<b> T </b> is the temperature.<br>
1414

1515
The fermi level is the energy for which the probability of electron occupying the state is 1/2
1616

1717
$$
18-
f_{o}(E) = \frac{1}{2}
18+
f_{o}(E) = \frac{1}{2}\tag{3.2}
1919
$$
2020

2121
In other words, states below the fermi level have a low probability of being empty and the states above the fermi level have a low probability of being filled and states above the fermi level have a high probability of being filled
2222

2323
<p><img src="images/Fig_3.2.png" ></p>
2424

25-
At 0K, the particles(electrons) are at the lowest energy stae. Hence, all states with energy below Fermi Level (E < E<sub>f</sub>) are completely occupied(Probability = f(E) = 1). All states with E > E<sub>f</sub> are unoccupied (f(E)=0). With increase in temperature, thermal energy is gained by the particles. Hence, particles move from states below the fermi level to the states above the fermi level. As a result th eFermi level function plot 'spreads' out more and more as the temperature increases.
25+
At 0 K, the particles(electrons) are at the lowest energy stae. Hence, all states with energy below Fermi Level (E < E<sub>f</sub>) are completely occupied(Probability = f(E) = 1). All states with E > E<sub>f</sub> are unoccupied (f(E)=0). With increase in temperature, thermal energy is gained by the particles. Hence, particles move from states below the fermi level to the states above the fermi level. As a result th eFermi level function plot 'spreads' out more and more as the temperature increases.
2626

2727
## Electron Density and Hole Density
2828
Number of electrons per c.c. in the conduction band at energy <br>
2929
E(i.e. between E & E+dE) = g<sub>c</sub>(E)f(E)dE
3030
where
3131
$$
32-
E \geq E_{c}
32+
E \geq E_{c}\tag{3.3}
3333
$$
3434

3535
$$
36-
n = \int_{E_{c}}^{\inf} g_{c}(E)f(E)dE
36+
n = \int_{E_{c}}^{\inf} g_{c}(E)f(E)dE \tag{3.4}
3737
$$
3838
This can be approximated for
3939
$$
40-
E_{C} - E_{F} \geq 3kT
40+
E_{C} - E_{F} \geq 3kT\tag{3.5}
4141
$$
4242
by,
4343
$$
44-
n = N_{C}e^{E_{f}-E_{C}/k_{B}T}
44+
n = N_{C}e^{E_{f}-E_{C}/k_{B}T}\tag{3.6}
4545
$$
4646

47+
Here, N<sub>C</sub> is the effective density of states in the conduction band.
48+
4749
Number of holes per c.c. in the valence band at energy <br>
4850
E(i.e. between E & E+dE) = g<sub>v</sub>(E)[1-f(E)]dE
4951
where
5052
$$
51-
E \leq E_{v}
53+
E \leq E_{v} \tag{3.7}
5254
$$
5355

5456
$$
55-
p = \int_{0}^{E_{v}} g_{v}(E)[1-f(E)]dE
57+
p = \int_{0}^{E_{v}} g_{v}(E)[1-f(E)]dE \tag{3.8}
5658
$$
5759
This can be approximated for
5860
$$
59-
E_{F} - E_{V} \geq 3kT
61+
E_{F} - E_{V} \geq 3kT \tag{3.9}
6062
$$
6163
by,
6264
$$
63-
p = N_{V}e^{E_{V}-E_{f}/k_{B}T}
65+
p = N_{V}e^{E_{V}-E_{f}/k_{B}T} \tag{3.10}
6466
$$
6567

6668
where, N<sub>v</sub> is the effective density of stes in the valence band
6769
$$
68-
N_{V} = 2(\frac{m_{v}^{2}k_{B}T}{2\pi \hbar^{2}})^{3/2}
70+
N_{V} = 2(\frac{m_{v}^{2}k_{B}T}{2\pi \hbar^{2}})^{3/2} \tag{3.11}
6971
$$
7072

7173
For an intrinsic material(not doped), the electron concentration is,
7274
$$
73-
n_{i} = N_{C}e^{E_{i}-E_{C}/k_{B}T}
75+
n_{i} = N_{C}e^{E_{i}-E_{C}/k_{B}T} \tag{3.12}
7476
$$
7577
and the hole concentration is
7678
$$
77-
n_{i} = N_{V}e^{E_{V}-E_{i}/k_{B}T}
79+
n_{i} = N_{V}e^{E_{V}-E_{i}/k_{B}T} \tag{3.13}
7880
$$
7981

8082
Therefore,
8183
$$
82-
n = n_{i}e^{E_{f}-E_{i}/k_{B}T}
84+
n = n_{i}e^{E_{f}-E_{i}/k_{B}T} \tag{3.14}
8385
$$
8486
and
8587
$$
86-
p = n_{i}e^{E_{i}-E_{f}/k_{B}T}
88+
p = n_{i}e^{E_{i}-E_{f}/k_{B}T}\tag{3.15}
8789
$$
8890

8991

9092
## Equilibrium Carrier Densities
93+
Equilibrium: A system is said to be in equilibrium, if no external inputs have been applied and the system is in a steady state. In other words, there are no net internal currents or carrier gradients in the system if left unperturbed<br>
9194
Equilibrium carrier densities refer to the number of carriers in the conduction and valence band with no externally applied bias. The electron densities are calulated by counting and adding up all the filled states. Hence, product of fermi function and DOS(Density of States) (refer to the <a href="https://virtual-labs.github.io/exp-dos-fermi-iiith/"> previous experiment</a> for details), is taken and integrated for the required energy range. Similarly for holes, Integrating product of probability of state being empty (1-f(E)) and
9295
density of states for given energy range gives holes concentration.
9396

94-
<div align="center">
95-
<image src="images/Fig_3.2.png" width="400px" height="auto">
96-
<span style="float: right;">(4.14)</span>
97-
</div><br>
98-
9997
## Equilibrium Carrier Density Product
10098
If n<sub>o</sub> and p<sub>o</sub> are the equillibrium concentration of elevtrons and holes respectively, the product is obatined by multiplying electron and hole concentrations
10199
$$
102-
n_{o}p_{o} = N_{C}e^{E_{F}-E_{C}/k_{B}T} \cdot N_{V}e^{E_{V}-E_{F}/k_{B}T}
100+
n_{o}p_{o} = N_{C}e^{E_{F}-E_{C}/k_{B}T} \cdot N_{V}e^{E_{V}-E_{F}/k_{B}T} \tag{3.16}
103101
$$
104102

105103
$$
106-
n_{o}p_{o} = N_{C}N_{V} e^{E_{V}-E_{C}/k_{B}T}
104+
n_{o}p_{o} = N_{C}N_{V} e^{E_{V}-E_{C}/k_{B}T} \tag{3.17}
107105
$$
108106

109107
The carrier product in the left-hand-side of th ebove equation is the intrinsic(undoped) silicon carrier concentration n<sub>i</sub> and as we know bandgap energy
110108
$$
111-
E_{G} = E_{V} - E_{C}
109+
E_{G} = E_{C} - E_{V} \tag{3.18}
112110
$$
113111
Hence,
114112
$$
115-
n_{i} = \sqrt{N_{C}N_{V}} e^{-E_{G}/2k_{B}T}
113+
n_{i} = \sqrt{N_{C}N_{V}} e^{-E_{G}/2k_{B}T}\tag{3.19}
116114
$$
117115

118116
We also obtain,
119117
$$
120-
n_{i}^{2} = n_{o}p_{o}
118+
n_{i}^{2} = n_{o}p_{o}\tag{3.20}
121119
$$
122120
This equation describes the law of mass action and relates the carrier concentration in doped semiconductor to intrinsic semiconductor.
123121

@@ -126,39 +124,42 @@ For an n-type semiconductor, the fermi level is Between the intrinsic level(E<su
126124

127125
We found that the electron density can be written as-
128126
$$
129-
n_{o} = N_{C}e^{E_{F}-E_{C}/k_{B}T}
127+
n_{o} = N_{C}e^{E_{F}-E_{C}/k_{B}T}\tag{3.21}
130128
$$
131129

132130
and the hole concentration can be written as-
133131

134132
$$
135-
p_{o} = N_{V}e^{E_{V}-E_{F}/k_{B}T}
133+
p_{o} = N_{V}e^{E_{V}-E_{F}/k_{B}T} \tag{3.22}
136134
$$
137135

138136
For an intrinsic semiconductor,
139137

140138
$$
141-
n_{o} = p_{o} = n_{i}
139+
n_{o} = p_{o} = n_{i} \tag{3.23}
142140
$$
143141

144142
or,
145143
$$
146-
N_{C}e^{E_{F}-E_{C}/k_{B}T} = N_{V}e^{E_{V}-E_{F}/k_{B}T}
144+
N_{C}e^{E_{F}-E_{C}/k_{B}T} = N_{V}e^{E_{V}-E_{F}/k_{B}T}\tag{3.24}
147145
$$
148146

149147
Solving for E<sub>F</sub> = E<sub>i</sub>(the intrinsic fermi level)
150148

151149
$$
152-
E_{i} = \frac{E_{C} + E_{V}}{2} + \frac{k_{B}T}{2} ln(\frac{N_{V}}{N_{C}})
150+
E_{i} = \frac{E_{C} + E_{V}}{2} + \frac{k_{B}T}{2} ln(\frac{N_{V}}{N_{C}}) \tag{3.25}
153151
$$
154152

155-
We find that the fermi level is not right in the middle of the conduction and the valuence band is wrong and that there is an additional correction factor. This correction depends on the effective densities of states in the valence and conduction bands.
153+
We find that the fermi level is not right in the middle of the conduction and the valuence band and that there is an additional correction factor. This correction depends on the effective densities of states in the valence and conduction bands.
154+
$$
155+
E_{i} = \frac{E_{C} + E_{V}}{2} + \frac{3k_{B}T}{4} ln(\frac{m*_{p}}{m*_{n}}) \tag{3.26}
156+
$$
156157

157158
## Doping Density
158-
In a uniformly doped semiconductor, the net charge is zero(doped with neutral atoms). This is called charge neutrlity.
159+
In a uniformly doped semiconductor, the net charge is zero(doped with neutral atoms). This is called charge neutrality.
159160

160161
$$
161-
p - n + N_{D}^{+} - N_{A}^{-} = 0
162+
\rho = q [p - n + N_{D}^{+} - N_{A}^{-}] = 0 \tag{3.27}
162163
$$
163164

164165
Dopant concentration is N<sub>D</sub> and acceptor concertation is N<sub>A</sub>. Ideally all the dopant atoms ionize and contribute electron/hole for conduction leaving behind a charged center. Let the ionized latter’s concentration be N<sub>D</sub><sup>+</sup> or N<sub>A</sub><sup>-</sup><br>

0 commit comments

Comments
 (0)