Python package for analysis of Fluoresence Lifetime Imaging Microscopy (FLIM) data.
- Python 3.7 (or later)
- pandas
- numpy (1.18)
- matplotlib
- seaborn
- pytorch
- scikit-learn
- xlsxwriter
- wxpython (4.0.7)
- pypubsub
- python.app (for Mac OSX)
- setuptools_scm
Windows Installation:
- Install VS Code
git clone https://github.com/uvaKCCI/flimanalyzer.git
cd flimanalyzer
conda env create -f environment.yml
conda activate flimenv
python setup.py install
This will create a Conda environment flimenv that contains all the Python packages required to run the FLIM Analyzer application.
MacOS X Installation
Activate the Conda environment, install the MacOS specific python.app package, and patch the shebang of the flimanalyzer console script.
conda activate flimenv
conda install python.app
sed -i '' -e "1s/.*/\#\!\/usr\/bin\/env pythonw/" $(which flimanalyzer)
From the command line
On Windows, run this command
conda activate flimenv
set PREFECT__FLOWS__CHECKPOINTING=true
flimanalyzer.exe
On Powershell, run this command
conda activate flimenv
$env:PREFECT__FLOWS__CHECKPOINTING='true'
flimanalyzer.exe
On Mac OSX and Linux, run this command
conda activate flimenv
export PREFECT__FLOWS__CHECKPOINTING=true
flimanalyzer
Parallel execution
FLIMAnalyzer uses Prefect and Dask for parallel execution of tasks. For parallel execution on a single node, add these command line arguments:
export PREFECT__FLOWS__CHECKPOINTING=true
flimanalyzer -e LocalDaskExecutor --execargs="scheduler=processes,num_workers=8" # or flimanalyzer.exe
As a general guideline, adjust num_workers to match the number of cpu cores in your system.