Skip to content

uvaKCCI/flimanalyzer

Repository files navigation

FLIMAnalyzer

Python package for analysis of Fluoresence Lifetime Imaging Microscopy (FLIM) data.

Requirements:

  • Python 3.7 (or later)
  • pandas
  • numpy (1.18)
  • matplotlib
  • seaborn
  • pytorch
  • scikit-learn
  • xlsxwriter
  • wxpython (4.0.7)
  • pypubsub
  • python.app (for Mac OSX)
  • setuptools_scm

Windows Installation:

  • Install VS Code

Installation:

git clone https://github.com/uvaKCCI/flimanalyzer.git
cd flimanalyzer
conda env create -f environment.yml
conda activate flimenv
python setup.py install

This will create a Conda environment flimenv that contains all the Python packages required to run the FLIM Analyzer application.

MacOS X Installation

Activate the Conda environment, install the MacOS specific python.app package, and patch the shebang of the flimanalyzer console script.

conda activate flimenv
conda install python.app
sed -i '' -e "1s/.*/\#\!\/usr\/bin\/env pythonw/" $(which flimanalyzer)

Run the application

From the command line

On Windows, run this command

conda activate flimenv
set PREFECT__FLOWS__CHECKPOINTING=true 
flimanalyzer.exe

On Powershell, run this command

conda activate flimenv
$env:PREFECT__FLOWS__CHECKPOINTING='true'
flimanalyzer.exe

On Mac OSX and Linux, run this command

conda activate flimenv
export PREFECT__FLOWS__CHECKPOINTING=true 
flimanalyzer

Parallel execution

FLIMAnalyzer uses Prefect and Dask for parallel execution of tasks. For parallel execution on a single node, add these command line arguments:

export PREFECT__FLOWS__CHECKPOINTING=true 
flimanalyzer -e LocalDaskExecutor --execargs="scheduler=processes,num_workers=8" # or flimanalyzer.exe

As a general guideline, adjust num_workers to match the number of cpu cores in your system.

About

Python package for analysis of Fluoresence Lifetime Imaging Microscopy (FLIM) data.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 6

Languages