Transform architectural documentation into complete, production-ready applications using AI-powered analysis and code generation.
JAEGIS AI Web OS is an enterprise-grade, universal application foundry that converts complex architectural documents into fully functional applications. Built with a hybrid Node.js/Python architecture, it combines advanced document processing, multi-provider AI integration, and sophisticated code generation to deliver production-ready projects in minutes.
graph TB
subgraph "Input Layer"
DOC[π Documents<br/>DOCX, PDF, PPT, Excel]
MD[π Markdown<br/>Architecture Specs]
HTML[π HTML<br/>Web Documentation]
end
subgraph "JAEGIS AI Web OS Core"
subgraph "Document Processing Engine"
PARSER[π Multi-Format Parser]
CHUNK[π Semantic Chunking]
EXTRACT[π― Entity Extraction]
end
subgraph "AI Integration Layer"
OPENAI[π€ OpenAI GPT-4]
ANTHROPIC[π§ Anthropic Claude]
AZURE[βοΈ Azure OpenAI]
LOCAL[π» Local Models]
FALLBACK[π Intelligent Fallback]
end
subgraph "Enterprise Caching"
REDIS[(ποΈ Redis Cache<br/>TTL Management)]
MEMORY[πΎ Memory Cache]
PERSIST[π½ Persistent Storage]
end
subgraph "Code Generation Engine"
TEMPLATE[π Template System]
BUILDER[ποΈ Project Builder]
VALIDATOR[β
Build Validator]
end
end
subgraph "Output Layer"
NEXTJS[βοΈ Next.js 15<br/>Full-Stack Apps]
REACT[βοΈ React 18<br/>Modern SPAs]
PYTHON[π Python CLI<br/>Applications]
DJANGO[π Django<br/>Web Apps]
FASTAPI[β‘ FastAPI<br/>High-Performance APIs]
end
DOC --> PARSER
MD --> PARSER
HTML --> PARSER
PARSER --> CHUNK
CHUNK --> EXTRACT
EXTRACT --> OPENAI
EXTRACT --> ANTHROPIC
EXTRACT --> AZURE
EXTRACT --> LOCAL
OPENAI --> FALLBACK
ANTHROPIC --> FALLBACK
AZURE --> FALLBACK
LOCAL --> FALLBACK
FALLBACK --> REDIS
REDIS --> TEMPLATE
TEMPLATE --> BUILDER
BUILDER --> VALIDATOR
VALIDATOR --> NEXTJS
VALIDATOR --> REACT
VALIDATOR --> PYTHON
VALIDATOR --> DJANGO
VALIDATOR --> FASTAPI
style JAEGIS fill:#e1f5fe
style REDIS fill:#ffecb3
style FALLBACK fill:#f3e5f5
The JAEGIS AI Web OS ecosystem transforms any architectural documentation into production-ready applications through intelligent document analysis, multi-provider AI processing, and enterprise-grade code generation.
flowchart LR
subgraph "Input Processing"
A[π Upload Document] --> B{π Format Detection}
B -->|DOCX| C[π Word Processor]
B -->|PDF| D[π PDF Extractor]
B -->|PPT| E[π― PowerPoint Parser]
B -->|Excel| F[π Spreadsheet Analyzer]
B -->|MD/HTML| G[π Web Parser]
end
subgraph "Content Analysis"
C --> H[π§© Semantic Chunking]
D --> H
E --> H
F --> H
G --> H
H --> I[π― Entity Extraction]
I --> J[ποΈ Architecture Analysis]
end
subgraph "AI Processing"
J --> K{π€ AI Provider Selection}
K -->|Primary| L[π OpenAI GPT-4]
K -->|Fallback| M[π§ Anthropic Claude]
K -->|Enterprise| N[βοΈ Azure OpenAI]
K -->|Local| O[π» Local Models]
end
subgraph "Code Generation"
L --> P[π Template Selection]
M --> P
N --> P
O --> P
P --> Q[ποΈ Project Generation]
Q --> R[β
Build Validation]
R --> S[π Ready Application]
end
style A fill:#e8f5e8
style S fill:#fff3e0
style K fill:#f3e5f5
From document upload to deployable application in under 60 seconds. The pipeline intelligently processes any format, extracts architectural intent, and generates production-ready code.
# Interactive mode - guided project generation
npx jaegis-ai-web-os interactive
# Direct build from architecture document
npx jaegis-ai-web-os build --base ./architecture.docx --output ./my-project
# Install globally via NPM
npm install -g jaegis-ai-web-os
# Or install via Python/pip
pip install jaegis-ai-web-os
# Verify installation
jaegis-ai-web-os --version
# Interactive mode with step-by-step guidance
jaegis-ai-web-os interactive
# Build from architectural document
jaegis-ai-web-os build --base ./docs/architecture.docx --output ./generated-app
# Enhanced mode with AI analysis
jaegis-ai-web-os build --base ./specs.md --enhanced --ai-provider openai
# Dry run to preview changes
jaegis-ai-web-os build --base ./design.pdf --dry-run --plan-only
# With Redis caching enabled
jaegis-ai-web-os build --base ./arch.docx --cache-enabled --redis-url redis://localhost:6379
graph TD
subgraph "Request Layer"
REQ[π User Request]
ROUTE[π― Smart Routing]
end
subgraph "Provider Management"
HEALTH[π Health Monitoring]
LOAD[βοΈ Load Balancing]
RATE[π¦ Rate Limiting]
end
subgraph "AI Providers"
subgraph "OpenAI"
GPT4[π GPT-4 Turbo]
GPT35[β‘ GPT-3.5 Turbo]
end
subgraph "Anthropic"
CLAUDE3[π§ Claude-3 Opus]
CLAUDE2[π Claude-2]
end
subgraph "Azure OpenAI"
AZURE_GPT[βοΈ Azure GPT-4]
AZURE_EMB[π Azure Embeddings]
end
subgraph "Local Models"
LLAMA[π¦ Llama 2]
MISTRAL[π Mistral 7B]
end
end
subgraph "Intelligent Fallback System"
RETRY[π Retry Logic]
CIRCUIT[β‘ Circuit Breaker]
CACHE[ποΈ Response Cache]
end
subgraph "Response Processing"
VALIDATE[β
Response Validation]
ENHANCE[π¨ Content Enhancement]
FORMAT[π Output Formatting]
end
REQ --> ROUTE
ROUTE --> HEALTH
HEALTH --> LOAD
LOAD --> RATE
RATE --> GPT4
RATE --> CLAUDE3
RATE --> AZURE_GPT
RATE --> LLAMA
GPT4 --> RETRY
CLAUDE3 --> RETRY
AZURE_GPT --> RETRY
LLAMA --> RETRY
RETRY --> CIRCUIT
CIRCUIT --> CACHE
CACHE --> VALIDATE
VALIDATE --> ENHANCE
ENHANCE --> FORMAT
style ROUTE fill:#e1f5fe
style RETRY fill:#fff3e0
style CACHE fill:#f3e5f5
Enterprise-grade AI integration with automatic failover, load balancing, and intelligent caching ensures 99.9% uptime and optimal performance.
flowchart TD
subgraph "Template Selection"
A[π― Architecture Analysis] --> B{ποΈ Framework Detection}
B -->|Frontend| C[βοΈ React/Next.js]
B -->|Backend| D[π Python/Django]
B -->|API| E[β‘ FastAPI]
B -->|Full-Stack| F[π Next.js 15]
B -->|CLI| G[π» Python CLI]
end
subgraph "Template Processing"
C --> H[π Component Generation]
D --> I[ποΈ Model Creation]
E --> J[π Endpoint Generation]
F --> K[π¨ Full-Stack Setup]
G --> L[βοΈ CLI Structure]
end
subgraph "Code Generation"
H --> M[π¦ Package Configuration]
I --> M
J --> M
K --> M
L --> M
M --> N[π§ Dependency Resolution]
N --> O[π Project Structure]
end
subgraph "Validation & Output"
O --> P[β
Syntax Validation]
P --> Q[π§ͺ Build Testing]
Q --> R[π Documentation Generation]
R --> S[π Ready Project]
end
subgraph "Enterprise Features"
T[π Security Scanning]
U[π Performance Optimization]
V[ποΈ Database Integration]
W[βοΈ Deployment Configuration]
end
S --> T
T --> U
U --> V
V --> W
style A fill:#e8f5e8
style S fill:#fff3e0
style W fill:#f3e5f5
Intelligent template selection and generation creates production-ready projects with enterprise features, security scanning, and deployment configuration.
graph TB
subgraph "Application Layer"
APP[π JAEGIS Application]
CLI[π» CLI Interface]
API[π API Endpoints]
end
subgraph "Cache Management Layer"
MANAGER[π― Cache Manager]
TTL[β° TTL Controller]
EVICT[ποΈ Eviction Policy]
end
subgraph "Redis Cluster"
subgraph "Primary Cache"
REDIS1[(ποΈ Redis Primary<br/>Documents & AI Responses)]
end
subgraph "Secondary Cache"
REDIS2[(ποΈ Redis Secondary<br/>Templates & Builds)]
end
subgraph "Session Cache"
REDIS3[(ποΈ Redis Sessions<br/>User State & Progress)]
end
end
subgraph "Fallback Storage"
DISK[π½ Disk Cache]
MEMORY[πΎ Memory Cache]
end
subgraph "Performance Metrics"
MONITOR[π Cache Monitoring]
ANALYTICS[π Performance Analytics]
ALERTS[π¨ Alert System]
end
APP --> MANAGER
CLI --> MANAGER
API --> MANAGER
MANAGER --> TTL
TTL --> EVICT
EVICT --> REDIS1
EVICT --> REDIS2
EVICT --> REDIS3
REDIS1 --> DISK
REDIS2 --> MEMORY
REDIS1 --> MONITOR
REDIS2 --> MONITOR
REDIS3 --> MONITOR
MONITOR --> ANALYTICS
ANALYTICS --> ALERTS
style MANAGER fill:#e1f5fe
style REDIS1 fill:#ffecb3
style MONITOR fill:#f3e5f5
Enterprise Redis implementation with clustering, intelligent TTL management, and comprehensive monitoring delivers 95%+ cache hit rates and sub-100ms response times.
- Multi-Provider Support: OpenAI GPT-4, Anthropic Claude, Azure OpenAI, local models
- Advanced Prompt Engineering: Chain-of-thought reasoning with role-based prompts
- Intelligent Fallbacks: Automatic provider switching and rule-based processing
- Context-Aware Analysis: Understands project dependencies and architectural patterns
- Multi-Format Support: Word (.docx), PDF, PowerPoint (.pptx), Excel (.xlsx), Markdown, HTML
- Structure Preservation: Maintains document hierarchy, tables, and embedded content
- Semantic Chunking: Context-aware content segmentation with overlap
- Entity Extraction: Automatic detection of technologies, dependencies, and commands
- Production Templates: Next.js, React, Python, Django, FastAPI with full project structure
- AI-Generated Content: Custom files created using intelligent prompts
- Dependency Management: Automatic package resolution and version compatibility
- Build Validation: Ensures generated projects are immediately runnable
- Guided Workflows: Step-by-step project generation with real-time feedback
- Rich Terminal UI: Progress tracking, status monitoring, and error reporting
- Preview Mode: Review generated plans before execution
- Configuration Management: Environment-specific settings with hot-reloading
- Comprehensive Error Handling: Graceful degradation with recovery strategies
- Advanced Caching: Redis-based caching with TTL management and clustering
- Structured Logging: Configurable levels with rotation and retention
- Performance Monitoring: Memory management and parallel processing
# AI Provider Configuration
export OPENAI_API_KEY="your-openai-key"
export ANTHROPIC_API_KEY="your-anthropic-key"
export MCP_PREFERRED_AI_PROVIDER="openai"
# Redis Configuration
export REDIS_URL="redis://localhost:6379"
export REDIS_PASSWORD="your-redis-password"
export REDIS_DB="0"
# Processing Configuration
export MCP_MAX_CHUNK_SIZE="4000"
export MCP_CACHE_ENABLED="true"
export MCP_LOG_LEVEL="INFO"
# Build Configuration
export MCP_BUILD_TIMEOUT="1800"
export MCP_DEFAULT_OUTPUT_DIRECTORY="./output"
# AI Provider Settings
ai:
preferred_provider: "openai"
request_timeout: 120
max_retries: 3
fallback_providers: ["anthropic", "azure", "local"]
# Redis Caching Configuration
cache:
enabled: true
redis:
url: "redis://localhost:6379"
password: null
db: 0
max_connections: 10
retry_on_timeout: true
ttl:
documents: 3600 # 1 hour
ai_responses: 7200 # 2 hours
templates: 86400 # 24 hours
builds: 1800 # 30 minutes
# Document Processing
processing:
max_chunk_size: 4000
chunk_overlap_size: 200
supported_formats: [".docx", ".pdf", ".md", ".txt", ".html", ".pptx", ".xlsx"]
parallel_processing: true
max_workers: 4
# Logging
logging:
level: "INFO"
file_enabled: true
rotation: "1 day"
retention: "30 days"
format: "%(asctime)s - %(name)s - %(levelname)s - %(message)s"