- Clone repository and get into it
git clone https://github.com/under-control/rl-task.git
cd rl-task
- Build docker:
docker build -t rl-task .
- Run docker with default parameters - 'FrozenLake8x8-v1' env for 100000 total learning timesteps:
docker run -it --rm --network host --ipc=host --name rl-rask --mount src=$(pwd),target=/root/code/,type=bind rl-task bash -c "python /root/code/main.py"
Note: if you are on windows run docker commands on PowerShell (in order to use $(pwd)
instead of typing your path)
Run docker with parameters for 'CarRacing-v0' env with 1000000 total learning timesteps :
docker run -it --rm --network host --ipc=host --name rl-rask --mount src=$(pwd),target=/root/code/,type=bind rl-task bash -c "python /root/code/main.py -e 'CarRacing-v0' -s 1000000"
You can also get inside docker:
docker run -it --rm --network host --ipc=host --name rl-rask --mount src=$(pwd),target=/root/code/,type=bind rl-task bash
And make experiments while being inside:
python /root/code/main.py -e 'CarRacing-v0' -s 1000000
See results on tensorboard (examples
folder contains run on default parameters)
tensorboard --logdir exp --port 6006