Skip to content

Arjun #13556

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 4 commits into
base: master
Choose a base branch
from
Open

Arjun #13556

Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,8 @@ data/images/*

results*.csv

output.txt

# Datasets -------------------------------------------------------------------------------------------------------------
coco/
coco128/
Expand Down
237 changes: 91 additions & 146 deletions detect.py
Original file line number Diff line number Diff line change
@@ -1,40 +1,11 @@
# Ultralytics πŸš€ AGPL-3.0 License - https://ultralytics.com/license
"""
Run YOLOv5 detection inference on images, videos, directories, globs, YouTube, webcam, streams, etc.

Usage - sources:
$ python detect.py --weights yolov5s.pt --source 0 # webcam
img.jpg # image
vid.mp4 # video
screen # screenshot
path/ # directory
list.txt # list of images
list.streams # list of streams
'path/*.jpg' # glob
'https://youtu.be/LNwODJXcvt4' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream

Usage - formats:
$ python detect.py --weights yolov5s.pt # PyTorch
yolov5s.torchscript # TorchScript
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
yolov5s_openvino_model # OpenVINO
yolov5s.engine # TensorRT
yolov5s.mlpackage # CoreML (macOS-only)
yolov5s_saved_model # TensorFlow SavedModel
yolov5s.pb # TensorFlow GraphDef
yolov5s.tflite # TensorFlow Lite
yolov5s_edgetpu.tflite # TensorFlow Edge TPU
yolov5s_paddle_model # PaddlePaddle
"""

import argparse
import csv
import os
import platform
import sys
from pathlib import Path

import paho.mqtt.client as mqtt
import torch

FILE = Path(__file__).resolve()
Expand Down Expand Up @@ -65,6 +36,84 @@
)
from utils.torch_utils import select_device, smart_inference_mode

MQTT_BROKER = "broker.hivemq.com"
MQTT_PORT = 1883
MQTT_TOPIC = "Automation001"


def on_connect(client, userdata, flags, rc):
if rc == 0:
print("Connected to MQTT broker successfully.")
else:
print(f"Failed to connect to MQTT broker, return code {rc}")


def on_publish(client, userdata, mid):
print(f"Message {mid} published.")


# Initialize MQTT client
client = mqtt.Client()
client.on_connect = on_connect
client.on_publish = on_publish
client.connect(MQTT_BROKER, MQTT_PORT, 60) # Connect to the broker

# Store detected objects over multiple frames (Sliding Window)
from collections import deque

WINDOW_SIZE = 30
RECOGNITION_THRESHOLD = 0.7

# Buffer to store objects detected over last N frames
focus_buffer = deque(maxlen=WINDOW_SIZE) # Track objects over last 5 frames


def get_focused_object(detections, img_shape):
"""
Determines the object the user is focusing on by finding the detection closest to the center of the frame and
ensuring persistence over frames.

:param detections: Tensor of shape (N, 6) containing [x1, y1, x2, y2, confidence, class]
:param img_shape: Shape of the original image (height, width, channels)
:return: The most consistently detected object (class ID) or None if no stable focus.
"""
if len(detections) == 0:
return 80 # No objects detected

# Step 1: Filter out low-confidence detections
detections = detections[detections[:, 4] > 0.5] # Keep only confidence > 50%

if len(detections) == 0:
return 80 # No confident detections

# Step 2: Calculate object centroids
image_center = torch.tensor([img_shape[1] / 2, img_shape[0] / 2]) # (x_center, y_center)
centroids = torch.stack(
[(detections[:, 0] + detections[:, 2]) / 2, (detections[:, 1] + detections[:, 3]) / 2], dim=1
)

# Step 3: Find the object closest to the center
distances = torch.norm(centroids - image_center, dim=1) # Euclidean distance
min_distance_index = torch.argmin(distances) # Index of the closest object

focused_object = int(detections[min_distance_index, 5]) # Get class ID of the focused object

# Step 4: Maintain a sliding window of detected objects
focus_buffer.append(focused_object)

# Step 5: Determine the most frequently appearing object in buffer
focus_counts = {obj: focus_buffer.count(obj) for obj in set(focus_buffer)}
most_frequent_object = max(focus_counts, key=focus_counts.get) # Object appearing most in buffer

# Only return if it appears in at least 60% of frames in the buffer
if focus_counts[most_frequent_object] >= RECOGNITION_THRESHOLD * len(focus_buffer):
return most_frequent_object
else:
return 80 # No stable focus object


# 80 class corresponds


@smart_inference_mode()
def run(
Expand Down Expand Up @@ -98,56 +147,6 @@ def run(
dnn=False, # use OpenCV DNN for ONNX inference
vid_stride=1, # video frame-rate stride
):
"""
Runs YOLOv5 detection inference on various sources like images, videos, directories, streams, etc.

Args:
weights (str | Path): Path to the model weights file or a Triton URL. Default is 'yolov5s.pt'.
source (str | Path): Input source, which can be a file, directory, URL, glob pattern, screen capture, or webcam
index. Default is 'data/images'.
data (str | Path): Path to the dataset YAML file. Default is 'data/coco128.yaml'.
imgsz (tuple[int, int]): Inference image size as a tuple (height, width). Default is (640, 640).
conf_thres (float): Confidence threshold for detections. Default is 0.25.
iou_thres (float): Intersection Over Union (IOU) threshold for non-max suppression. Default is 0.45.
max_det (int): Maximum number of detections per image. Default is 1000.
device (str): CUDA device identifier (e.g., '0' or '0,1,2,3') or 'cpu'. Default is an empty string, which uses the
best available device.
view_img (bool): If True, display inference results using OpenCV. Default is False.
save_txt (bool): If True, save results in a text file. Default is False.
save_csv (bool): If True, save results in a CSV file. Default is False.
save_conf (bool): If True, include confidence scores in the saved results. Default is False.
save_crop (bool): If True, save cropped prediction boxes. Default is False.
nosave (bool): If True, do not save inference images or videos. Default is False.
classes (list[int]): List of class indices to filter detections by. Default is None.
agnostic_nms (bool): If True, perform class-agnostic non-max suppression. Default is False.
augment (bool): If True, use augmented inference. Default is False.
visualize (bool): If True, visualize feature maps. Default is False.
update (bool): If True, update all models' weights. Default is False.
project (str | Path): Directory to save results. Default is 'runs/detect'.
name (str): Name of the current experiment; used to create a subdirectory within 'project'. Default is 'exp'.
exist_ok (bool): If True, existing directories with the same name are reused instead of being incremented. Default is
False.
line_thickness (int): Thickness of bounding box lines in pixels. Default is 3.
hide_labels (bool): If True, do not display labels on bounding boxes. Default is False.
hide_conf (bool): If True, do not display confidence scores on bounding boxes. Default is False.
half (bool): If True, use FP16 half-precision inference. Default is False.
dnn (bool): If True, use OpenCV DNN backend for ONNX inference. Default is False.
vid_stride (int): Stride for processing video frames, to skip frames between processing. Default is 1.

Returns:
None

Examples:
```python
from ultralytics import run

# Run inference on an image
run(source='data/images/example.jpg', weights='yolov5s.pt', device='0')

# Run inference on a video with specific confidence threshold
run(source='data/videos/example.mp4', weights='yolov5s.pt', conf_thres=0.4, device='0')
```
"""
source = str(source)
save_img = not nosave and not source.endswith(".txt") # save inference images
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
Expand All @@ -165,6 +164,7 @@ def run(
device = select_device(device)
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
stride, names, pt = model.stride, model.names, model.pt
names[80] = "none"
imgsz = check_img_size(imgsz, s=stride) # check image size

# Dataloader
Expand Down Expand Up @@ -253,11 +253,16 @@ def write_to_csv(image_name, prediction, confidence):

# Write results
for *xyxy, conf, cls in reversed(det):
c = int(cls) # integer class
c = get_focused_object(det, im0.shape) # integer class
label = names[c] if hide_conf else f"{names[c]}"
confidence = float(conf)
confidence_str = f"{confidence:.2f}"

if confidence > 0.50:
msg = f"{label}"
# client.publish(MQTT_TOPIC, msg, retain=True)
print(f"data sent to mqtt: {msg}")

if save_csv:
write_to_csv(p.name, label, confidence_str)

Expand Down Expand Up @@ -311,6 +316,11 @@ def write_to_csv(image_name, prediction, confidence):
# Print time (inference-only)
LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1e3:.1f}ms")

if cv2.waitKey(1) == ord("q"):
cv2.destroyAllWindows
# raise StopIteration
break

# Print results
t = tuple(x.t / seen * 1e3 for x in dt) # speeds per image
LOGGER.info(f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}" % t)
Expand All @@ -322,49 +332,6 @@ def write_to_csv(image_name, prediction, confidence):


def parse_opt():
"""
Parse command-line arguments for YOLOv5 detection, allowing custom inference options and model configurations.

Args:
--weights (str | list[str], optional): Model path or Triton URL. Defaults to ROOT / 'yolov5s.pt'.
--source (str, optional): File/dir/URL/glob/screen/0(webcam). Defaults to ROOT / 'data/images'.
--data (str, optional): Dataset YAML path. Provides dataset configuration information.
--imgsz (list[int], optional): Inference size (height, width). Defaults to [640].
--conf-thres (float, optional): Confidence threshold. Defaults to 0.25.
--iou-thres (float, optional): NMS IoU threshold. Defaults to 0.45.
--max-det (int, optional): Maximum number of detections per image. Defaults to 1000.
--device (str, optional): CUDA device, i.e., '0' or '0,1,2,3' or 'cpu'. Defaults to "".
--view-img (bool, optional): Flag to display results. Defaults to False.
--save-txt (bool, optional): Flag to save results to *.txt files. Defaults to False.
--save-csv (bool, optional): Flag to save results in CSV format. Defaults to False.
--save-conf (bool, optional): Flag to save confidences in labels saved via --save-txt. Defaults to False.
--save-crop (bool, optional): Flag to save cropped prediction boxes. Defaults to False.
--nosave (bool, optional): Flag to prevent saving images/videos. Defaults to False.
--classes (list[int], optional): List of classes to filter results by, e.g., '--classes 0 2 3'. Defaults to None.
--agnostic-nms (bool, optional): Flag for class-agnostic NMS. Defaults to False.
--augment (bool, optional): Flag for augmented inference. Defaults to False.
--visualize (bool, optional): Flag for visualizing features. Defaults to False.
--update (bool, optional): Flag to update all models in the model directory. Defaults to False.
--project (str, optional): Directory to save results. Defaults to ROOT / 'runs/detect'.
--name (str, optional): Sub-directory name for saving results within --project. Defaults to 'exp'.
--exist-ok (bool, optional): Flag to allow overwriting if the project/name already exists. Defaults to False.
--line-thickness (int, optional): Thickness (in pixels) of bounding boxes. Defaults to 3.
--hide-labels (bool, optional): Flag to hide labels in the output. Defaults to False.
--hide-conf (bool, optional): Flag to hide confidences in the output. Defaults to False.
--half (bool, optional): Flag to use FP16 half-precision inference. Defaults to False.
--dnn (bool, optional): Flag to use OpenCV DNN for ONNX inference. Defaults to False.
--vid-stride (int, optional): Video frame-rate stride, determining the number of frames to skip in between
consecutive frames. Defaults to 1.

Returns:
argparse.Namespace: Parsed command-line arguments as an argparse.Namespace object.

Example:
```python
from ultralytics import YOLOv5
args = YOLOv5.parse_opt()
```
"""
parser = argparse.ArgumentParser()
parser.add_argument("--weights", nargs="+", type=str, default=ROOT / "yolov5s.pt", help="model path or triton URL")
parser.add_argument("--source", type=str, default=ROOT / "data/images", help="file/dir/URL/glob/screen/0(webcam)")
Expand Down Expand Up @@ -407,28 +374,6 @@ def parse_opt():


def main(opt):
"""
Executes YOLOv5 model inference based on provided command-line arguments, validating dependencies before running.

Args:
opt (argparse.Namespace): Command-line arguments for YOLOv5 detection. See function `parse_opt` for details.

Returns:
None

Note:
This function performs essential pre-execution checks and initiates the YOLOv5 detection process based on user-specified
options. Refer to the usage guide and examples for more information about different sources and formats at:
https://github.com/ultralytics/ultralytics

Example usage:

```python
if __name__ == "__main__":
opt = parse_opt()
main(opt)
```
"""
check_requirements(ROOT / "requirements.txt", exclude=("tensorboard", "thop"))
run(**vars(opt))

Expand Down
3 changes: 3 additions & 0 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -145,3 +145,6 @@ close-quotes-on-newline = true
[tool.codespell]
ignore-words-list = "crate,nd,strack,dota,ane,segway,fo,gool,winn,commend"
skip = '*.csv,*venv*,docs/??/,docs/mkdocs_??.yml'

[tool.setuptools.packages]
find = { include = ["models", "data", "segment", "classify"] }
1 change: 1 addition & 0 deletions requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -47,3 +47,4 @@ setuptools>=70.0.0 # Snyk vulnerability fix
# mss # screenshots
# albumentations>=1.0.3
# pycocotools>=2.0.6 # COCO mAP
paho-mqtt>=2.1.0
Loading