This library is a quick way to do exploratory statistical analysis to evaluate variable relationship and importance
From your notebook environment:
!pip install tuaneda
Import the library
from tuaneda import tuanfuncs
Show available functions in the library:
help(tuanfuncs)
Example on information value:
from sklearn.datasets import load_iris
iris = load_iris()
iris_data = pd.DataFrame(data= np.c_[iris['data'], iris['target']],
columns= iris['feature_names'] + ['target'])
X = iris_data.iloc[:,:5]
y = iris_data['target']
obj = tuanfuncs.Eda(X,y)
woe_dict, iv_dict = obj.woe_iv_continuous()
iv_graph = obj.barchart_dict(iv_dict)