Skip to content

tmvhs1004/USOA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

42 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

USOA

Unified model of Semantic segmentation and Object detection for Autonomous driving

Paper Link : https://lib.dongguk.edu/search/media/url/CAT000001257272

This description is based on Win10 + Anaconda3

Enviroments

OS : Win10

Manage Syatem : Anaconda3

Package Version

  • Python = 3.8.12
  • Pytorch = 1.10.1
  • Albumentation = 1.0.3
  • OpenCV = 4.0.1
  • NVIDIA Driver : 472.47

Train Dataset : BDD100K train set + Argumentation(My Paper)

Test Dataset : BDD100K Validation set

Image Size : 640 x 384

Object Detection Class : Vehicle(Car + Bus + Truck + Train )

Semantic Segmentation Class : Background, Road(Alternative + Direction)

Model Architecture

모델구조

Inference Video (BDD100K Test)

Video Label

Daytime : https://www.youtube.com/watch?v=rAvok4emD-8

Video Label

Night : https://www.youtube.com/watch?v=m36-rhSQ4cI

Performance

Model Size AP(IOU=0.5) mIoU FPS(RTX3090)
YOLOP 640x384 76.5 91.5 46.51
USOA 640x384 76.79 92.57 41.49

Inference Image Example

00a2e3ca-5c856cde 00a2e3ca-5c856cde 00a04f65-af2ab984 00a04f65-af2ab984

How to Install package

0. Update Your NVIDIA Graphic Driver 
1. Open Anaconda3 prompt
2. conda create -n usoa python=3.8.12
3. conda activate usoa
4. conda install pytorch==1.10.1 torchvision==0.11.2 torchaudio==0.10.1 cudatoolkit=11.3 -c pytorch -c conda-forge
5. conda install -c anaconda cudnn
6. conda install -c conda-forge albumentations

Quick Start

How to doing?

0. git clone https://github.com/tmvhs1004/USOA or Download zip, Unzip, Change folder name USOA-main to USOA
1. Download trained-weight file (File Link : https://drive.google.com/file/d/1oZSQRVQztqOmNqRiVHUy4ZPkl5XkDfLi/view?usp=sharing )
2. Move trained-weight file to './USOA/Weight/END/ ' Folder 
3. Open Anaconda Prompt
4. Cd to USOA folder 
5. Enter the command 'python test.py'
6. Waiting for testing time
7. Inference image is saved in './USOA/Result/output/' folder

Training

How to doing?

0. git clone https://github.com/tmvhs1004/USOA or Download zip, Unzip, Change folder name USOA-main to USOA
1. Download Dataset (File Link) https://drive.google.com/file/d/1K26G7jKbrsHHoiZ6c-7QRUgo7wFfl5M6/view?usp=sharing
2. Unzip to './USOA/Data/' Folder 
3. Change code line 115 at Train.py file
  train_set = './Data/Example/' -> train_set = './Data/Train_640x384_refo+w2h2/'
4. Change hyper-parameter such as 'batch size' in Config.py file
5. Open Anaconda Prompt
6. Cd to USOA folder 
7. Enter the command 'python train.py'
8. Waiting for training time
9. The weight file is saved in './USOA/Weight/' folder

Testing

How to doing?

0. git clone https://github.com/tmvhs1004/USOA or Download zip, Unzip, Change folder name USOA-main to USOA
1. Download Dataset (File Link : https://drive.google.com/file/d/1Zhe58ERgCIkw9yzQRTR9fmGg7U0EzNuu/view?usp=sharing )
2. Unzip to './USOA/Data/' Folder 
3. Change code line 145 at Test.py file
  test_set = './Data/Example/' -> test_set = './Data/Test_640x384_refo/'
4. Download trained-weight file (File Link : https://drive.google.com/file/d/1oZSQRVQztqOmNqRiVHUy4ZPkl5XkDfLi/view?usp=sharing )
5. Move trained-weight file to './USOA/Weight/END/ ' Folder 
6. Change hyper-parameter such as 'batch size' in Config.py file
7. Open Anaconda Prompt
8. Cd to USOA folder 
9. Enter the command 'python test.py'
10. Waiting for testing time
11. Inference image is saved in './USOA/Result/output/' folder

Releases

No releases published

Packages

No packages published

Languages