Skip to content

tilley0/promptforge

Repository files navigation

🔨 promptforge

AI/ML Prompt Engineering & Agentic AI Development

promptforge is a workspace for building prompt libraries, agentic AI patterns, and LLM-integrated systems. It emphasizes reproducibility, evaluation, and sane engineering practices (testing, linting, CI-friendly).


🚀 Goals

  • Reusable prompt patterns (instruction, role-based, few-shot, eval-ready).
  • Agentic workflows: planning, tool-use, memory, multi-agent handoffs.
  • Observability & evaluation: runs, metrics, cost/latency, outcome scoring.
  • Pluggable providers (OpenAI, Anthropic, or local via LiteLLM).

📂 Repository Layout

├── prompts/                 # Prompt templates, chains, archetypes
├── agents/                  # Agent configs, workflows, orchestration
├── data/                    # Context, small datasets, embeddings
├── experiments/             # Experiment runs, eval results, benchmarks
├── notebooks/               # Jupyter/Colab exploration
├── scripts/                 # CLI & utilities (run agents, eval, export)
│   └── run_agent.py
├── configs/                 # YAML/TOML configs for agents & eval
│   └── example_agent.yaml
├── tests/                   # Unit/integration tests (pytest)
├── docs/                    # Guides, design notes, diagrams
├── .env.example             # Env var template (copy to .env)
├── pyproject.toml           # Poetry project (deps, formatters, linters)
├── requirements.txt         # Pip alternative to Poetry
├── .gitignore
└── README.md

🧰 Getting Started

1) Clone and choose your Python workflow

git clone https://github.com/tilley0/promptforge.git
cd promptforge
# Recommended: Python 3.10–3.12
python -m venv .venv && source .venv/bin/activate  # Windows: .venv\Scripts\activate

Option A: Poetry

pip install --upgrade pip
pip install poetry
poetry install

Option B: Pip

pip install --upgrade pip
pip install -r requirements.txt

2) Configure credentials

Copy the template and set your keys:

cp .env.example .env
# edit .env: set OPENAI_API_KEY or ANTHROPIC_API_KEY, pick a default model

Minimal .env example:

# One of these (or both)
OPENAI_API_KEY=sk-...
ANTHROPIC_API_KEY=...
# Optional defaults
PROVIDER=openai
OPENAI_MODEL=gpt-4o-mini
ANTHROPIC_MODEL=claude-3-5-sonnet-latest

3) Run a quick smoke test

python scripts/run_agent.py --config configs/example_agent.yaml --message "Say hello and list three capabilities."

4) Dev quality of life

Format, lint, type-check, and test:

# If using Poetry:
poetry run ruff check .
poetry run ruff format .
poetry run mypy .
poetry run pytest -q

# If using pip:
ruff check . && ruff format . && mypy . && pytest -q

📖 Documentation

  • Prompt Patternsdocs/prompts.md
  • Agent Architecturesdocs/agents.md
  • Evaluationdocs/evaluation.md

Don’t see these yet? They’re stubs—open PRs are welcome.


🧪 Roadmap

  • Baseline prompt library with eval sets
  • Tool-augmented agent framework (search, RAG, function-calling)
  • Repro evaluation harness (win-rate, rubric scoring, cost/latency)
  • Telemetry (tokens, traces, decision logs)
  • Multi-agent collaboration patterns

🤝 Contributing

  1. Fork the repo
  2. Create a feature branch
  3. Include tests and update docs
  4. Open a PR with a crisp description

🔒 Security & Ethics

  • Build responsibly; avoid harmful, deceptive, and noncompliant uses.
  • Keep keys and datasets out of version control.
  • If you handle regulated data, wire policies and data guards into your agents.

📜 License

MIT – see LICENSE

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages