tidymass shiny
: A user-friendly shinyapp designed for metabolomics data analysis within the tidymass framework. 
tidymassshiny
is a part of tidymass project.
##> for chinese users:
##> options("repos" = c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/"))
##> options(BioC_mirror="https://mirrors.westlake.edu.cn/bioconductor")
if (!require('remotes')) install.packages('remotes');
if (!require('tidyverse')) install.packages('tidyverse');
## Install tidymass follow: https://www.tidymass.org/docs/chapter1/1-installation/
if (!require('tidymass')) {
source("https://www.tidymass.org/tidymass-packages/install_tidymass.txt");
install_tidymass(from = "tidymass.org")
};
if (!require('writexl')) install.packages("writexl");
if (!require('hexbin')) install.packages('hexbin')
if (!require('ComplexUpset'))install.packages('ComplexUpset');
if (!require('shinyalert'))install.packages('shinyalert');
if (!require('shinyFiles')) remotes::install_github('thomasp85/shinyFiles');
if (!require('shinyWidgets')) remotes::install_github("dreamRs/shinyWidgets");
if (!require('shiny')) install.packages('shiny');
if (!require('bsicons')) install.packages('bsicons');
if (!require('bslib')) install.packages('bslib');
if (!require('plotly')) install.packages('plotly');
if (!require('colourpicker')) install.packages('colourpicker');
if (!require('massdbbuildin')) remotes::install_github('tidymass/massdbbuildin');
if (!require('tidymassshiny')) remotes::install_github('tidymass/tidymass_shiny')
library(tidyverse)
library(tidymass)
library(tidymassshiny)
run_tidymass_shiny()
The following webpage pops up to indicate that tidymass shiny
is installed successfully.
Please see the tidymassshiny-tutorial to get the instruction of tidymass shiny
.
If you have any quesitions about tidymass shiny
, please don’t hesitate to
email me (shawnwang2016@126.com).
You can also initiate a question a or bug report in the issue page
.
If you use tidymass shiny
in your publications, please cite this paper:
Shen, X., Yan, H., Wang, C. et al. TidyMass an object-oriented reproducible analysis framework for LC–MS data. Nat Commun 13, 4365 (2022).
Thanks very much!