GrafoRVFL is an open-source Python library designed to optimize Random Vector Functional Link (RVFL) networks using various gradient-free metaheuristic algorithms such as GA, PSO, WOA, TLO, DE, etc. It is fully implemented in NumPy and seamlessly integrates with the Scikit-Learn interface, making it easy to plug into standard ML workflows. GrafoRVFL enables hyperparameter tuning for RVFL networks without relying on gradient-based methods.
- β Free software under GNU GPL v3
- π Full documentation: https://graforvfl.readthedocs.io
- π§ Estimators:
RvflRegressor
RvflClassifier
GfoRvflCV
GfoRvflTuner
GfoRvflComparator
- π Python compatibility:
>= 3.8
- π§© Dependencies:
numpy
,scipy
,scikit-learn
,pandas
,mealpy
,permetrics
,matplotlib
Please include these citations if you plan to use this library:
@software{nguyen_van_thieu_2023_10258280,
author = {Nguyen Van Thieu},
title = {GrafoRVFL: A Gradient-Free Optimization Framework for Boosting Random Vector Functional Link Network},
month = June,
year = 2025,
publisher = {Zenodo},
doi = {10.5281/zenodo.10258280},
url = {https://github.com/thieu1995/GrafoRVFL}
}
@article{van2023mealpy,
title={MEALPY: An open-source library for latest meta-heuristic algorithms in Python},
author={Van Thieu, Nguyen and Mirjalili, Seyedali},
journal={Journal of Systems Architecture},
year={2023},
publisher={Elsevier},
doi={10.1016/j.sysarc.2023.102871}
}
@inproceedings{nguyen2019building,
title={Building resource auto-scaler with functional-link neural network and adaptive bacterial foraging optimization},
author={Nguyen, Thieu and Nguyen, Binh Minh and Nguyen, Giang},
booktitle={International Conference on Theory and Applications of Models of Computation},
pages={501--517},
year={2019},
organization={Springer}
}
@inproceedings{nguyen2018resource,
title={A resource usage prediction system using functional-link and genetic algorithm neural network for multivariate cloud metrics},
author={Nguyen, Thieu and Tran, Nhuan and Nguyen, Binh Minh and Nguyen, Giang},
booktitle={2018 IEEE 11th conference on service-oriented computing and applications (SOCA)},
pages={49--56},
year={2018},
organization={IEEE},
doi={10.1109/SOCA.2018.00014}
}
-
Learn more about Random Vector Functional Link from this paper
-
Learn more about on how to use Gradient Free Optimization to fine-tune the hyper-parameter of RVFL networks from this paper
Install the latest version from PyPI:
$ pip install graforvfl
Verify installation:
$ python
>>> import graforvfl
>>> graforvfl.__version__
Below is a simple example code of how to use Gradient Free Optimization to tune hyper-parameter of RVFL network.
from sklearn.datasets import load_breast_cancer
from graforvfl import Data, GfoRvflCV, StringVar, IntegerVar, FloatVar
## Load data object
X, y = load_breast_cancer(return_X_y=True)
data = Data(X, y)
## Split train and test
data.split_train_test(test_size=0.2, random_state=2, inplace=True)
print(data.X_train.shape, data.X_test.shape)
## Scaling dataset
data.X_train, scaler_X = data.scale(data.X_train, scaling_methods=("standard", "minmax"))
data.X_test = scaler_X.transform(data.X_test)
data.y_train, scaler_y = data.encode_label(data.y_train)
data.y_test = scaler_y.transform(data.y_test)
# Design the boundary (parameters)
my_bounds = [
IntegerVar(lb=3, ub=50, name="size_hidden"),
StringVar(valid_sets=("none", "relu", "leaky_relu", "celu", "prelu", "gelu", "elu",
"selu", "rrelu", "tanh", "hard_tanh", "sigmoid", "hard_sigmoid",
"log_sigmoid", "silu", "swish", "hard_swish", "soft_plus", "mish",
"soft_sign", "tanh_shrink", "soft_shrink", "hard_shrink",
"softmin", "softmax", "log_softmax"), name="act_name"),
StringVar(valid_sets=("orthogonal", "he_uniform", "he_normal", "glorot_uniform",
"glorot_normal", "lecun_uniform", "lecun_normal", "random_uniform",
"random_normal"), name="weight_initializer"),
FloatVar(lb=0, ub=10., name="reg_alpha"),
]
model = GfoRvflCV(problem_type="classification", bounds=my_bounds,
optim="OriginalWOA", optim_params={"name": "WOA", "epoch": 10, "pop_size": 20},
scoring="AS", cv=3, seed=42, verbose=True)
model.fit(data.X_train, data.y_train)
print(model.best_params)
print(model.best_estimator)
print(model.best_estimator.scores(data.X_test, data.y_test, list_metrics=("PS", "RS", "NPV", "F1S", "F2S")))
π The more complicated cases in the folder: examples. You can also read the documentation for more detailed installation instructions, explanations, and examples.
- π Official source code repository
- π Official document
- π¦ Download releases
- π Issue tracker
- π Notable changes log
- π¬ Official discussion group
Developed by: Thieu @ 2025