FISHAI is a deep learning framework for fish image classification. It includes dataset enhancement, model training, and performance benchmarking against baseline architectures.
FISHAI/
│
├── Dataset/
│ ├── RawDataset/ # Unprocessed dataset
│ └── EnhancedDataset/ # Processed dataset ready for training
│
├── model_weight/
│ ├── baselines/ # Saved baseline model weights
│ ├── fish_cnn.pth # Trained FISHAI CNN model
│ └── training_curves.png # Performance curves
│
├── enhanced_processing.py # Enhances raw dataset for training
├── cnn.py # CNN model definition
├── training.py # Training pipeline for the FISHAI model
├── baseline.py # Baseline model training script
├── __init__.py
Convert raw data into a structured and preprocessed format using:
python enhanced_processing.py --input_dir <path_to_RawDataset> --output_dir <path_to_EnhancedDataset>
Define the FISHAI CNN architecture:
python cnn.py
Train the enhanced CNN model on the enhanced dataset:
python training.py \
--num_classes <int> \
--epochs <int> \
--lr <float> \
--weight_decay <float> \
--batch_size <int> \
--step_size <int> \
--gamma <float> \
--data_dir <path_to_EnhancedDataset> \
--img_size <int> \
--rotation <float> \
--scale_min <float> \
--scale_max <float> \
--mean <mean_values> \
--std <std_values> \
--save_dir <output_model_dir> \
--model_name <model_identifier> \
--device <cuda_or_cpu>
Run baseline comparisons using standard architectures:
python baseline.py \
--num_classes <int> \
--epochs <int> \
--batch_size <int> \
--data_dir <path_to_EnhancedDataset> \
--img_size <int> \
--mean <mean_values> \
--std <std_values> \
--save_dir <output_model_dir> \
--device <cuda_or_cpu>
- Trained model weights saved under
model_weight/
- Training curves and performance metrics stored as
training_curves.png
Please mention this repository in your work if you find it useful.