Skip to content
/ www Public

Text2Doc: Universal Document Conversion Ecosystem ๐ŸŒŸ Motto "Transform Data, Unleash Potential" ## ๐Ÿš€ Mission Statement To provide a seamless, powerful, and flexible document conversion platform that empowers businesses and developers to transform data across multiple formats with unprecedented ease and efficiency.

Notifications You must be signed in to change notification settings

text2doc/www

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

8 Commits
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

text2doc

Text2Doc: Universal Document Conversion Ecosystem

๐ŸŒŸ Motto

"Transform Data, Unleash Potential"

๐Ÿš€ Mission Statement

To provide a seamless, powerful, and flexible document conversion platform that empowers businesses and developers to transform data across multiple formats with unprecedented ease and efficiency.

๐ŸŽฏ Vision

We envision a world where data flows freely between formats, breaking down barriers of communication and enabling intelligent, automated document processing.

๐ŸŒˆ Project Overview

Strategic Objectives

  1. Flexibility: Create a modular document conversion ecosystem
  2. Efficiency: Minimize manual data transformation efforts
  3. Accessibility: Make complex document conversions simple
  4. Extensibility: Support continuous innovation in document processing

Text2Doc examples: Real-World Use Cases and Solutions

These examples demonstrate the versatility of Text2Doc in solving real-world data transformation challenges across various industries. The library provides a flexible, powerful solution for:

  • Automating complex reporting processes
  • Ensuring data consistency and accuracy
  • Simplifying data extraction and transformation
  • Supporting multiple output formats
  • Maintaining data privacy and compliance

1. Sales Reporting Automation

Problem

Manual creation of sales reports is time-consuming and error-prone, requiring data extraction, formatting, and distribution.

Solution

Automated pipeline that extracts sales data, transforms it, and generates professional reports.

from text2doc import DocumentPipeline

def generate_sales_report():
    pipeline = DocumentPipeline("monthly_sales_report")
    pipeline.add_stage('sql', {
        'connection_string': 'postgresql://sales_database',
        'query': '''
            SELECT 
                product_category, 
                SUM(quantity) as total_quantity, 
                SUM(total_price) as revenue,
                AVG(unit_price) as avg_price
            FROM sales
            WHERE sale_date >= DATE_TRUNC('month', CURRENT_DATE - INTERVAL '1 month')
            GROUP BY product_category
        '''
    })
    pipeline.add_stage('json', {
        'transformations': [
            {'sort_by': 'revenue'},
            {'top_n': 10}
        ]
    })
    pipeline.add_stage('html', {
        'template': 'sales_report_template.html'
    })
    pipeline.add_stage('pdf')
    pipeline.add_stage('print', {
        'printer': 'management_reports_printer'
    })
    
    pipeline.execute()

2. Customer Support Ticket Analysis

Problem

Difficulty in tracking and analyzing customer support interactions across multiple channels.

Solution

Consolidate support ticket data from various sources and generate comprehensive analysis reports.

from text2doc import DocumentPipeline

def support_ticket_analysis():
    pipeline = DocumentPipeline("support_ticket_insights")
    pipeline.add_stage('sql', {
        'connection_string': 'postgresql://support_db',
        'query': '''
            SELECT 
                category,
                COUNT(*) as ticket_count,
                AVG(resolution_time) as avg_resolution_time,
                COUNT(CASE WHEN status = 'resolved' THEN 1 END) as resolved_tickets
            FROM support_tickets
            WHERE created_at >= DATE_TRUNC('quarter', CURRENT_DATE)
            GROUP BY category
        '''
    })
    pipeline.add_stage('json', {
        'transformations': [
            {'calculate_percentages': {
                'resolved_percentage': 'resolved_tickets / ticket_count * 100'
            }}
        ]
    })
    pipeline.add_stage('html', {
        'template': 'support_analysis_template.html'
    })
    pipeline.add_stage('pdf')
    
    report = pipeline.execute()

3. Inventory Management Reporting

Problem

Complex inventory tracking across multiple warehouses and product lines.

Solution

Create dynamic inventory reports with real-time data aggregation and visualization.

from text2doc import DocumentPipeline

def inventory_management_report():
    pipeline = DocumentPipeline("inventory_status_report")
    pipeline.add_stage('sql', {
        'connection_string': 'mysql://inventory_system',
        'query': '''
            SELECT 
                warehouse_location,
                product_category,
                SUM(stock_quantity) as total_stock,
                SUM(CASE WHEN stock_quantity < reorder_point THEN 1 ELSE 0 END) as low_stock_items,
                AVG(stock_value) as avg_stock_value
            FROM inventory
            GROUP BY warehouse_location, product_category
        '''
    })
    pipeline.add_stage('json', {
        'transformations': [
            {'flag_low_stock': 'total_stock < 100'},
            {'calculate_total_value': 'total_stock * avg_stock_value'}
        ]
    })
    pipeline.add_stage('html', {
        'template': 'inventory_report_template.html',
        'chart_type': 'pie'
    })
    pipeline.add_stage('pdf')
    pipeline.add_stage('zpl', {
        'label_type': 'inventory_warning'
    })
    
    pipeline.execute()

4. Financial Compliance Reporting

Problem

Generating standardized financial reports that meet regulatory requirements.

Solution

Automated pipeline to extract, transform, and format financial data for compliance reporting.

from text2doc import DocumentPipeline

def financial_compliance_report():
    pipeline = DocumentPipeline("quarterly_financial_report")
    pipeline.add_stage('sql', {
        'connection_string': 'postgresql://financial_db',
        'query': '''
            SELECT 
                account_type,
                SUM(total_revenue) as revenue,
                SUM(total_expenses) as expenses,
                SUM(net_profit) as net_profit,
                AVG(profit_margin) as avg_profit_margin
            FROM financial_statements
            WHERE quarter = CURRENT_QUARTER
            GROUP BY account_type
        '''
    })
    pipeline.add_stage('json', {
        'transformations': [
            {'validate_compliance_rules': True},
            {'calculate_ratios': [
                'debt_to_equity_ratio',
                'current_ratio'
            ]}
        ]
    })
    pipeline.add_stage('html', {
        'template': 'financial_compliance_template.html',
        'watermark': 'CONFIDENTIAL'
    })
    pipeline.add_stage('pdf', {
        'encryption': True
    })
    
    report = pipeline.execute()

5. Supply Chain Logistics Tracking

Problem

Complex tracking of shipments, inventory movement, and logistics performance.

Solution

Create comprehensive logistics reports with detailed tracking and performance metrics.

from text2doc import DocumentPipeline

def logistics_performance_report():
    pipeline = DocumentPipeline("logistics_tracking_report")
    pipeline.add_stage('sql', {
        'connection_string': 'postgresql://logistics_db',
        'query': '''
            SELECT 
                shipping_partner,
                COUNT(*) as total_shipments,
                AVG(delivery_time) as avg_delivery_time,
                SUM(CASE WHEN status = 'delayed' THEN 1 ELSE 0 END) as delayed_shipments
            FROM shipment_tracking
            WHERE shipment_date >= DATE_SUB(CURRENT_DATE, INTERVAL 1 MONTH)
            GROUP BY shipping_partner
        '''
    })
    pipeline.add_stage('json', {
        'transformations': [
            {'calculate_performance_score': True},
            {'rank_shipping_partners': 'avg_delivery_time'}
        ]
    })
    pipeline.add_stage('html', {
        'template': 'logistics_performance_template.html',
        'include_charts': True
    })
    pipeline.add_stage('pdf')
    pipeline.add_stage('zpl', {
        'label_type': 'shipping_performance'
    })
    
    pipeline.execute()

6. Healthcare Patient Data Anonymization

Problem

Generating anonymized patient reports while maintaining data privacy and compliance.

Solution

Create a pipeline that extracts, anonymizes, and reports patient data securely.

from text2doc import DocumentPipeline

def anonymized_patient_report():
    pipeline = DocumentPipeline("patient_data_report")
    pipeline.add_stage('sql', {
        'connection_string': 'postgresql://medical_records',
        'query': '''
            SELECT 
                department,
                COUNT(*) as patient_count,
                AVG(treatment_duration) as avg_treatment_time,
                SUM(treatment_cost) as total_treatment_cost
            FROM patient_records
            WHERE treatment_date >= DATE_SUB(CURRENT_DATE, INTERVAL 3 MONTH)
            GROUP BY department
        '''
    })
    pipeline.add_stage('json', {
        'transformations': [
            {'anonymize_data': True},
            {'remove_personal_identifiers': ['patient_id']}
        ]
    })
    pipeline.add_stage('html', {
        'template': 'patient_report_template.html',
        'compliance_mode': 'HIPAA'
    })
    pipeline.add_stage('pdf', {
        'encryption': True,
        'access_controls': True
    })
    
    pipeline.execute()

๐Ÿ—๏ธ Comprehensive Project Structure

Project Hierarchy

text2doc/
โ”‚
โ”œโ”€โ”€ text2doc/                   # Core Library
โ”‚   โ”œโ”€โ”€ __init__.py             # Package initialization
โ”‚   โ”‚
โ”‚   โ”œโ”€โ”€ core/                   # Conversion Components
โ”‚   โ”‚   โ”œโ”€โ”€ base_converter.py   # Base conversion logic
โ”‚   โ”‚   โ”œโ”€โ”€ sql_converter.py    # SQL to data converter
โ”‚   โ”‚   โ”œโ”€โ”€ json_converter.py   # JSON transformations
โ”‚   โ”‚   โ”œโ”€โ”€ html_converter.py   # HTML rendering
โ”‚   โ”‚   โ”œโ”€โ”€ pdf_converter.py    # PDF generation
โ”‚   โ”‚   โ”œโ”€โ”€ zpl_converter.py    # ZPL label printing
โ”‚   โ”‚   โ””โ”€โ”€ print_converter.py  # Printing utilities
โ”‚   โ”‚
โ”‚   โ”œโ”€โ”€ pipeline/               # Pipeline Management
โ”‚   โ”‚   โ”œโ”€โ”€ base_pipeline.py    # Core pipeline logic
โ”‚   โ”‚   โ””โ”€โ”€ document_pipeline.py# Document conversion pipeline
โ”‚   โ”‚
โ”‚   โ”œโ”€โ”€ utils/                  # Utility Modules
โ”‚   โ”‚   โ”œโ”€โ”€ config_manager.py   # Configuration handling
โ”‚   โ”‚   โ”œโ”€โ”€ logger.py           # Logging utilities
โ”‚   โ”‚   โ”œโ”€โ”€ exceptions.py       # Custom exceptions
โ”‚   โ”‚   โ””โ”€โ”€ scheduler.py        # Pipeline scheduling
โ”‚   โ”‚
โ”‚   โ”œโ”€โ”€ gui/                    # Graphical Interfaces
โ”‚   โ”‚   โ”œโ”€โ”€ main_window.py      # Main application window
โ”‚   โ”‚   โ”œโ”€โ”€ converter_panel.py  # Conversion interface
โ”‚   โ”‚   โ””โ”€โ”€ pipeline_builder.py # Pipeline creation UI
โ”‚   โ”‚
โ”‚   โ””โ”€โ”€ cli/                    # Command Line Interface
โ”‚       โ””โ”€โ”€ main.py             # CLI entry point
โ”‚
โ”œโ”€โ”€ frontend/                   # React Configuration UI
โ”‚   โ”œโ”€โ”€ src/
โ”‚   โ”‚   โ”œโ”€โ”€ App.js
โ”‚   โ”‚   โ””โ”€โ”€ PipelineConfigApp.js
โ”‚   โ”œโ”€โ”€ Dockerfile
โ”‚   โ””โ”€โ”€ package.json
โ”‚
โ”œโ”€โ”€ backend/                    # Flask Backend
โ”‚   โ”œโ”€โ”€ app.py
โ”‚   โ”œโ”€โ”€ Dockerfile
โ”‚   โ””โ”€โ”€ requirements.txt
โ”‚
โ”œโ”€โ”€ examples/                   # Usage Examples
โ”‚   โ”œโ”€โ”€ simple_conversion.py
โ”‚   โ”œโ”€โ”€ pipeline_example.py
โ”‚   โ””โ”€โ”€ advanced_pipeline.py
โ”‚
โ”œโ”€โ”€ tests/                      # Testing Suite
โ”‚   โ”œโ”€โ”€ test_converters.py
โ”‚   โ”œโ”€โ”€ test_pipeline.py
โ”‚   โ””โ”€โ”€ test_config.py
โ”‚
โ”œโ”€โ”€ docs/                       # Documentation
โ”‚   โ”œโ”€โ”€ index.md
โ”‚   โ”œโ”€โ”€ installation.md
โ”‚   โ””โ”€โ”€ usage.md
โ”‚
โ”œโ”€โ”€ setup.py
โ”œโ”€โ”€ pyproject.toml
โ””โ”€โ”€ docker-compose.yml

๐Ÿ”ง Key Components

1. Converters

  • SQL to various formats
  • JSON transformation
  • HTML rendering
  • PDF generation
  • ZPL label printing

2. Pipeline Management

  • Modular stage-based conversions
  • Flexible configuration
  • Error handling
  • Logging and monitoring

3. Scheduling System

  • Cron-based scheduling
  • Retry mechanisms
  • Notification support
  • Multi-process execution

4. User Interfaces

  • Web-based configuration
  • CLI support
  • Graphical pipeline builder

๐Ÿ’ก Core Technologies

  • Python
  • Flask
  • React
  • SQLAlchemy
  • Jinja2
  • Pandas
  • WeasyPrint

๐Ÿ›ก๏ธ Guiding Principles

  1. Modularity: Each component should be independent and replaceable
  2. Configurability: Maximum flexibility for diverse use cases
  3. Performance: Efficient data processing
  4. Reliability: Robust error handling and logging

๐Ÿ“ฆ Installation

Prerequisites

  • Python 3.8+
  • pip
  • Docker (optional)

Quick Install

pip install text2doc

Docker Deployment

docker-compose up

๐Ÿš€ Quick Start

Basic Conversion

from text2doc import DocumentPipeline

pipeline = DocumentPipeline("sales_report")
pipeline.add_stage('sql')
pipeline.add_stage('json')
pipeline.add_stage('html')
pipeline.add_stage('pdf')

report = pipeline.execute()

๐Ÿค Contributing

  1. Fork the repository
  2. Create feature branch
  3. Commit changes
  4. Push to branch
  5. Create Pull Request

๐Ÿ“„ License

Apache License 2.0

๐Ÿ“ž Contact

๐ŸŒ Community

  • Slack Channel
  • Discussion Forums
  • Regular Meetups

๐Ÿ”ฎ Future Roadmap

  • Machine Learning Integration
  • More Converter Types
  • Enhanced Scheduling
  • Cloud Service Support

Remember: Data transformation is not just about changing formatsโ€”it's about unlocking the potential hidden within your information.

obraz

DocuTemp

  • Document Template based on Multipart MIME Content Types
  • portable format to exchange many files in portable opened HTML format
  • self encryption and decryption
  • portable encrypted safe for documents

Solutions

  • DocuTemp a solution for creating templates for everything that can be edited and stored in one HTML file
  • DocuTAN is an encryption engine for DocuTemp file
  • FinOfficer is a SaaS service that uses DocuTAN to conduct transactions in the company's private or on a provider's infrastructure

DOCS:

Offer

  • DocuTemp is focused on templates,
  • DocuTAN.com on Encryption/Decryption process to send the Data in any communication channels.
  • FinOfficer.com - bezpieczne zbieranie, przechowywanie i wymiana dokumentรณw z ksiฤ™gowoล›ciฤ… i prawnikiem
  • Lockerless.com - jednorazowy sejf i szyfrowana transmisja
  • DocuTan.com - klucze prywatne do bezpiecznych transakcji

The file is in muiltipart HTML format, so it's fully portable encrypted container/safe to sensetive data, even on local PC/ Smartphone it will be not possible to see the content, without password.

The Attachement can be included and excluded at any time, and device with browser, and be edited directly through local services, so it will be not possible to see source without password, data are saved in encrypted html file, so you need to give the password to see current state of file, can use any browser and dynamicly preview.

DocuTAN

  • a portable safe with TAN mechanism to encrypt or decrypt documents stored in one html file

"Docu" suggests the document element while "TAN" implies Transaction Authentication Number, a secure mechanism often associated with encryption. Together, it implies a system that secures documents using a TAN mechanism which can be ideal for your product with encryption and decryption functionalities. It's an effective tool for a security-focused people.

values, vision, and features of DocuTAN a portable safe with TAN mechanism to encrypt or decrypt documents stored in one html file


  1. Portability: Above all else, DocuTemp is portable safe for documents stored in one html file
  2. Integrity: We value and maintain an honest and transparent relationship with our users. We continue to develop our systems to deliver on all of our promises.
  3. Innovation: At DocuTAN, we believe in leveraging cutting-edge technology, such as the TAN mechanism, to provide top-notch data protection.

Vision: To make secure document storage and transfer simple and accessible for all businesses, ensuring critical information is safe wherever and whenever. We aim to be recognized as a leading provider of portable encryption solutions that are both easy-to-use and highly secure.

Features of DocuTAN: 3. Single HTML File Storage: DocuTAN lets you store your sensitive documents in one HTML file, making it easy to manage and control your data. 4. Device Compatibility: DocuTAN can be used on any device with a browser. This ensures maximum flexibility to view and edit documents securely.

About

Text2Doc: Universal Document Conversion Ecosystem ๐ŸŒŸ Motto "Transform Data, Unleash Potential" ## ๐Ÿš€ Mission Statement To provide a seamless, powerful, and flexible document conversion platform that empowers businesses and developers to transform data across multiple formats with unprecedented ease and efficiency.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published