Skip to content

talkierbox/berry-esseen-universality-bounds

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

26 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Berry–Esseen Universality in Sparse d‑Regular Graphs

This repo tests the sharp Berry–Esseen bounds recently proved by
Leonhard Nagel (2025) and Huang & Yau (2023) for eigenvector overlaps in sparse random‑regular graphs.

We:

  • generate batches of random d-regular graphs,
  • compute the Kolmogorov–Smirnov distance D_N of rescaled eigenvector entries,
  • check that log D_N vs log N follows the predicted slope ‑1/6 (up to log factors).

Roadmap

Step Task What we expect Status
1 Fixed degree For several (d, N) pairs, slope of log D_N vs log N ≈ ‑1/6 Done ✅
2 Growing degree For d(N) ≤ N^0.25, slope stays ≈ ‑1/6 after dividing D_N by √d Done ✅

Quick start

# clone repository
git clone https://github.com/talkierbox/berry-essen-universality-bounds
cd berry-essen-universality-bounds

# install dependencies
pip install -r requirements.txt

# generate graph data (writes compressed edge lists to ./data)
python generate_graphs.py

# run the analysis notebook
jupyterlab main.ipynb

Repository Layout

.
├── generate_graphs.py   # batch generator using NetworKit / NetworkX
├── main.ipynb           # main notebook
└── data/                # .npz files created by generate_graphs.py

Requirements

Python 3.10+, pip install -r requirements.txt

About

Computationally verifying Berry-Esseen rates for sparse random d-regular graphs

Topics

Resources

Stars

Watchers

Forks