Please use requirements.txt
to set up a virtual environment with python 3.10.
This project supports multiple translation and training modes, as outlined below.
The following script performs LLM translation, then sentence-level evaluations, and dialect-level evaluations.
The optional command-line arguments [--gpt] [--aya] [--gemini]
specify which model to use.
LLM translations and sentence-level evaluations are stored at out/{model_name}_{data_file}.csv
.
Dialect-level evaluation is saved at metrics/{model_name}_{data_file}.csv
.
$ python -m src.benchmark_llms data_file [--gpt] [--aya] [--gemini]
We uploaded each of our AraT5 trained checkpoints to huggingface hub, we employed a three-stage fine-tuning approach.
To reproduce AraT5 results you can use the eval script for each of the three stages
$ python -m src.inference_AraT5 --model_name "ibrahimsharaf/AraT5_stage1" --input_data "data/osact6_task2_test.csv" --batch_size 32
$ python -m src.inference_AraT5 --model_name "ibrahimsharaf/AraT5_stage2" --input_data "data/osact6_task2_test.csv" --batch_size 32
$ python -m src.inference_AraT5 --model_name "ibrahimsharaf/AraT5_stage3" --input_data "data/osact6_task2_test.csv" --batch_size 32
AraT5 translations and sentence-level evaluations are stored at out/{model_name}_{data_file}.csv
.
Dialect-level evaluation is saved at metrics/{model_name}_{data_file}.csv
.