Skip to content

superlinked/langchain-superlinked

Repository files navigation

langchain-superlinked

image

Integration package that exposes Superlinked retrieval capabilities via the standard LangChain retriever interface. It lets you plug a Superlinked-powered retriever into LangChain RAG pipelines while keeping your vector storage and schema choices flexible. If you want to dive deeper into how Superlinked's mixture-of-encoders algorithm is different, learn more here.

Install

pip install -U langchain-superlinked superlinked

Quickstart

import superlinked.framework as sl
from langchain_superlinked import SuperlinkedRetriever

class DocumentSchema(sl.Schema):
    id: sl.IdField
    content: sl.String

doc_schema = DocumentSchema()
text_space = sl.TextSimilaritySpace(text=doc_schema.content, model="sentence-transformers/all-MiniLM-L6-v2")
index = sl.Index([text_space])
query = (
    sl.Query(index)
    .find(doc_schema)
    .similar(text_space.text, sl.Param("query_text"))
    .select([doc_schema.content])
)

source = sl.InMemorySource(schema=doc_schema)
executor = sl.InMemoryExecutor(sources=[source], indices=[index])
app = executor.run()
source.put([
    {"id": "1", "content": "Machine learning processes data efficiently."},
    {"id": "2", "content": "NLP understands human language."},
])

retriever = SuperlinkedRetriever(sl_client=app, sl_query=query, page_content_field="content")
docs = retriever.invoke("artificial intelligence", k=2)

See more end-to-end examples in docs/.


Local development

Prerequisites: Python 3.10–3.13, uv installed.

  • Setup: uv sync --all-extras --dev && uv run pre-commit install
  • Lint & type-check: uv run ruff check . && uv run ruff format --check . && uv run mypy langchain_superlinked
  • Unit tests: make test
  • Integration tests: make integration_tests (skips if langchain_tests isn’t installed)
  • Smoke test: make smoke
  • Run examples: uv run python docs/quickstart_examples.py

CI/CD overview

On push/PR to main, GitHub Actions runs (matrix: 3.10/3.11/3.12):

  • Lint: ruff check . and ruff format --check .
  • Type-check: mypy langchain_superlinked
  • Tests: unit (network disabled) and integration (skips if standard tests unavailable)
  • Smoke test: imports the package and symbols
  • Build: python -m build to produce sdist and wheel (no publish)

Workflow file: .github/workflows/ci.yml.


Releasing

  • Preferred: tag-based OIDC publish
    • Ensure PyPI Trusted Publisher is configured for this repo.
    • Bump version in pyproject.toml using semantic versioning.
    • Tag and push: git tag vX.Y.Z && git push origin vX.Y.Z
    • CI will build and publish automatically.
  • Manual (fallback):
    • Build artifacts: make dist
    • Validate: uv run twine check dist/*
    • Publish to PyPI: uv run twine upload -r pypi dist/*

After publish, open/refresh the docs PR in the LangChain monorepo to reference the new version if needed. See LangChain’s integration guide for the process: How to contribute an integration.


Implementation overview

  • Primary entrypoint: langchain_superlinked/retrievers.py exposes SuperlinkedRetriever, a BaseRetriever.
  • Construction:
    • sl_client: Superlinked App (e.g., from InMemoryExecutor.run()).
    • sl_query: Superlinked QueryDescriptor built via sl.Query(...).find(...).similar(...).select(...).
    • page_content_field: field from Superlinked results mapped to Document.page_content.
    • Optional metadata_fields: copied into Document.metadata in addition to the always-present id.
  • Behavior:
    • Accepts runtime parameters (e.g., k, weights, filters) and forwards them to the Superlinked query.
    • Handles missing fields gracefully; returns an empty list on upstream exceptions.

Scope and non-goals

This package aims to be the minimal, well-typed LangChain integration layer for Superlinked retrievers. It intentionally does not include:

  • Dynamic schema inference or auto-generation for arbitrary datasets. Rationale: datasets vary widely; a robust solution requires additional assumptions (typing, transforms, index strategy), which goes beyond the minimal integration. We recommend implementing this in a separate helper package or cookbook code layered on top (e.g., “schema builders” that emit Superlinked schemas and indices for your domain). The examples in docs/ illustrate patterns for composing spaces (text, categorical, numeric, recency) that such builders could automate.
  • Non-retriever integrations (custom LLMs, embeddings, caches, loaders). These can live in separate packages if needed.

If you have concrete requirements for dynamic schema construction, please open an issue with sample data and desired retrieval behavior so we can discuss an extensible approach that stays decoupled from the core integration.


Links

License

MIT (see LICENSE)

About

Custom superlinked retriever in langchain

Resources

License

Stars

Watchers

Forks

Packages

No packages published