This is a weekend project to create a simple RAG application that stores embeddings of text documents using Qdrant, and a MCP server to query this Vector Database, and a MCP client using Claude to interact.
- Jupyter notebook
idx_qdrant.ipynbhas the Python code to index documents into Qdrant. - Copy
.env.exampleto.envand fill in the values. - Run the MCP server using
./run_server.sh. - In another terminal, run the MCP client using
./run_client.sh.